图像分割(Image Segmentation)

本文转载自:王先荣同志的博客 http://www.cnblogs.com/xrwang/archive/2010/02/28/ImageSegmentation.html

图像分割指的是将数字图像细分为多个图像子区域的过程,在OpenCv中实现了三种跟图像分割相关的算法,它们分别是:分水岭分割算法、金字塔分割算法以及均值漂移分割算法。它们的使用过程都很简单,下面的文章权且用于记录,并使该系列保持完整吧。

1、分水岭分割算法

    分水岭分割算法需要您或者先前算法提供标记,该标记用于指定哪些大致区域是目标,哪些大致区域是背景等等;分水岭分割算法的分割效果严重依赖于提供的标记。OpenCv中的函数cvWatershed实现了该算法,函数定义如下:

void cvWatershed(const CvArr * image, CvArr * markers)

其中:image为8为三通道的彩色图像;
      markers是单通道整型图像,它用不同的正整数来标记不同的区域,下面的代码演示了如果响应鼠标事件,并生成标记图像。

生成标记图像

            //当鼠标按下并在源图像上移动时,在源图像上绘制分割线条
        private void pbSource_MouseMove(object sender, MouseEventArgs e)
        {
            //如果按下了左键
            if (e.Button == MouseButtons.Left)
            {
                if (previousMouseLocation.X >= 0 && previousMouseLocation.Y >= 0)
                {
                    Point p1 = new Point((int)(previousMouseLocation.X * xScale), (int)(previousMouseLocation.Y * yScale));
                    Point p2 = new Point((int)(e.Location.X * xScale), (int)(e.Location.Y * yScale));
                    LineSegment2D ls = new LineSegment2D(p1, p2);
                    int thickness = (int)(LineWidth * xScale);
                    imageSourceClone.Draw(ls, new Bgr(255d, 255d, 255d), thickness);
                    pbSource.Image = imageSourceClone.Bitmap;
                    imageMarkers.Draw(ls, new Gray(drawCount), thickness);
                }
                previousMouseLocation = e.Location;
            }
        }

        //当松开鼠标左键时,将绘图的前一位置设置为(-1,-1)
        private void pbSource_MouseUp(object sender, MouseEventArgs e)
        {
            previousMouseLocation = new Point(-1, -1);
            drawCount++;
        }


您可以用类似下面的方式来使用分水岭算法:

使用分水岭分割算法

        /// 
        /// 分水岭算法图像分割
        /// 
        /// 返回用时
        private string Watershed()
        {
            //分水岭算法分割
            Image imageMarkers2 = imageMarkers.Copy();
            Stopwatch sw = new Stopwatch();
            sw.Start();
            CvInvoke.cvWatershed(imageSource.Ptr, imageMarkers2.Ptr);
            sw.Stop();
            //将分割的结果转换到256级灰度图像
            pbResult.Image = imageMarkers2.Bitmap;
            imageMarkers2.Dispose();
            return string.Format("分水岭图像分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }

2、 金字塔分割算法
    金字塔分割算法由cvPrySegmentation所实现,该函数的使用很简单;需要注意的是图像的尺寸以及金字塔的层数,图像的宽度和高度必须能被2整除,能够被2整除的次数决定了金字塔的最大层数。下面的代码演示了如果校验金字塔层数:

校验金字塔分割的金字塔层数

        /// 
        /// 当改变金字塔分割的参数“金字塔层数”时,对参数进行校验
        /// 
        /// 
        /// 
        private void txtPSLevel_TextChanged(object sender, EventArgs e)
        {
            int level = int.Parse(txtPSLevel.Text);
            if (level < 1 || imageSource.Width % (int)(Math.Pow(2, level - 1)) != 0 || imageSource.Height % (int)(Math.Pow(2, level - 1)) != 0)
                MessageBox.Show(this, "注意:您输入的金字塔层数不符合要求,计算结果可能会无效。", "金字塔层数错误");
        }

使用金字塔分割的示例代码如下:


使用金字塔分割算法

        /// 
        /// 金字塔分割算法
        /// 
        /// 
        private string PrySegmentation()
        {
            //准备参数
            Image imageDest = new Image(imageSource.Size);
            MemStorage storage = new MemStorage();
            IntPtr ptrComp = IntPtr.Zero;
            int level = int.Parse(txtPSLevel.Text);
            double threshold1 = double.Parse(txtPSThreshold1.Text);
            double threshold2 = double.Parse(txtPSThreshold2.Text);
            //金字塔分割
            Stopwatch sw = new Stopwatch();
            sw.Start();
            CvInvoke.cvPyrSegmentation(imageSource.Ptr, imageDest.Ptr, storage.Ptr, out ptrComp, level, threshold1, threshold2);
            sw.Stop();
            //显示结果
            pbResult.Image = imageDest.Bitmap;
            //释放资源
            imageDest.Dispose();
            storage.Dispose();
            return string.Format("金字塔分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }


3、均值漂移分割算法
    均值漂移分割算法由cvPryMeanShiftFiltering所实现,均值漂移分割的金字塔层数只能介于[1,7]之间,您可以用类似下面的代码来使用它:
使用均值漂移分割算法

        /// 
        /// 均值漂移分割算法
        /// 
        /// 
        private string PryMeanShiftFiltering()
        {
            //准备参数
            Image imageDest = new Image(imageSource.Size);
            double spatialRadius = double.Parse(txtPMSFSpatialRadius.Text);
            double colorRadius = double.Parse(txtPMSFColorRadius.Text);
            int maxLevel = int.Parse(txtPMSFNaxLevel.Text);
            int maxIter = int.Parse(txtPMSFMaxIter.Text);
            double epsilon = double.Parse(txtPMSFEpsilon.Text);
            MCvTermCriteria termcrit = new MCvTermCriteria(maxIter, epsilon);
            //均值漂移分割
            Stopwatch sw = new Stopwatch();
            sw.Start();
            OpenCvInvoke.cvPyrMeanShiftFiltering(imageSource.Ptr, imageDest.Ptr, spatialRadius, colorRadius, maxLevel, termcrit);
            sw.Stop();
            //显示结果
            pbResult.Image = imageDest.Bitmap;
            //释放资源
            imageDest.Dispose();
            return string.Format("均值漂移分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }

函数cvPryMeanShiftFiltering在EmguCv中没有实现,我们可以用下面的方式来使用:

//均值漂移分割
        [DllImport("cv200.dll")]
        public static extern void cvPyrMeanShiftFiltering(IntPtr src, IntPtr dst, double spatialRadius, double colorRadius, int max_level, MCvTermCriteria termcrit);

4、分割效果及性能对比
    上述三种分割算法的效果如何呢?下面我们以它们的默认参数,对一幅2272x1704大小的图像进行分割。得到的结果如下所示:

图像分割(Image Segmentation)_第1张图片

图像分割(Image Segmentation)_第2张图片


图像分割(Image Segmentation)_第3张图片


总结:从上面我们可以看出:
    (1)分水岭分割算法的分割效果效果最好,均值漂移分割算法次之,而金字塔分割算法的效果最差;
    (2)均值漂移分割算法效率最高,分水岭分割算法接近于均值漂移算法,金字塔分割算法需要很长的时间。
    值得注意的是分水岭算法对标记很敏感,需要仔细而认真的绘制。


本文的完整代码:

本文完整代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
using Emgu.CV.UI;

namespace ImageProcessLearn
{
    public partial class FormImageSegment : Form
    {
        //成员变量
        private string sourceImageFileName = "wky_tms_2272x1704.jpg";//源图像文件名
        private Image imageSource = null;                //源图像
        private Image imageSourceClone = null;           //源图像的克隆
        private Image imageMarkers = null;              //标记图像
        private double xScale = 1d;                                 //原始图像与PictureBox在x轴方向上的缩放
        private double yScale = 1d;                                 //原始图像与PictureBox在y轴方向上的缩放
        private Point previousMouseLocation = new Point(-1, -1);    //上次绘制线条时,鼠标所处的位置
        private const int LineWidth = 5;                            //绘制线条的宽度
        private int drawCount = 1;                                  //用户绘制的线条数目,用于指定线条的颜色
        
        public FormImageSegment()
        {
            InitializeComponent();
        }

        //窗体加载时
        private void FormImageSegment_Load(object sender, EventArgs e)
        {
            //设置提示
            toolTip.SetToolTip(rbWatershed, "可以在源图像上用鼠标绘制大致分割区域线条,该线条用于分水岭算法");
            toolTip.SetToolTip(txtPSLevel, "金字塔层数跟图像尺寸有关,该值只能是图像尺寸被2整除的次数,否则将得出错误结果");
            toolTip.SetToolTip(txtPSThreshold1, "建立连接的错误阀值");
            toolTip.SetToolTip(txtPSThreshold2, "分割簇的错误阀值");
            toolTip.SetToolTip(txtPMSFSpatialRadius, "空间窗的半径");
            toolTip.SetToolTip(txtPMSFColorRadius, "色彩窗的半径");
            toolTip.SetToolTip(btnClearMarkers, "清除绘制在源图像上,用于分水岭算法的大致分割区域线条");
            //加载图像
            LoadImage();
        }

        //当窗体关闭时,释放资源
        private void FormImageSegment_FormClosing(object sender, FormClosingEventArgs e)
        {
            if (imageSource != null)
                imageSource.Dispose();
            if (imageSourceClone != null)
                imageSourceClone.Dispose();
            if (imageMarkers != null)
                imageMarkers.Dispose();
        }

        //加载源图像
        private void btnLoadImage_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.CheckFileExists = true;
            ofd.DefaultExt = "jpg";
            ofd.Filter = "图片文件|*.jpg;*.png;*.bmp|所有文件|*.*";
            if (ofd.ShowDialog(this) == DialogResult.OK)
            {
                if (ofd.FileName != "")
                {
                    sourceImageFileName = ofd.FileName;
                    LoadImage();
                }
            }
            ofd.Dispose();
        }

        //清除分割线条
        private void btnClearMarkers_Click(object sender, EventArgs e)
        {
            if (imageSourceClone != null)
                imageSourceClone.Dispose();
            imageSourceClone = imageSource.Copy();
            pbSource.Image = imageSourceClone.Bitmap;
            imageMarkers.SetZero();
            drawCount = 1;
        }

        //当鼠标按下并在源图像上移动时,在源图像上绘制分割线条
        private void pbSource_MouseMove(object sender, MouseEventArgs e)
        {
            //如果按下了左键
            if (e.Button == MouseButtons.Left)
            {
                if (previousMouseLocation.X >= 0 && previousMouseLocation.Y >= 0)
                {
                    Point p1 = new Point((int)(previousMouseLocation.X * xScale), (int)(previousMouseLocation.Y * yScale));
                    Point p2 = new Point((int)(e.Location.X * xScale), (int)(e.Location.Y * yScale));
                    LineSegment2D ls = new LineSegment2D(p1, p2);
                    int thickness = (int)(LineWidth * xScale);
                    imageSourceClone.Draw(ls, new Bgr(255d, 255d, 255d), thickness);
                    pbSource.Image = imageSourceClone.Bitmap;
                    imageMarkers.Draw(ls, new Gray(drawCount), thickness);
                }
                previousMouseLocation = e.Location;
            }
        }

        //当松开鼠标左键时,将绘图的前一位置设置为(-1,-1)
        private void pbSource_MouseUp(object sender, MouseEventArgs e)
        {
            previousMouseLocation = new Point(-1, -1);
            drawCount++;
        }

        //加载源图像
        private void LoadImage()
        {
            if (imageSource != null)
                imageSource.Dispose();
            imageSource = new Image(sourceImageFileName);
            if (imageSourceClone != null)
                imageSourceClone.Dispose();
            imageSourceClone = imageSource.Copy();
            pbSource.Image = imageSourceClone.Bitmap;
            if (imageMarkers != null)
                imageMarkers.Dispose();
            imageMarkers = new Image(imageSource.Size);
            imageMarkers.SetZero();
            xScale = 1d * imageSource.Width / pbSource.Width;
            yScale = 1d * imageSource.Height / pbSource.Height;
            drawCount = 1;
        }

        //分割图像
        private void btnImageSegment_Click(object sender, EventArgs e)
        {
            if (rbWatershed.Checked)
                txtResult.Text += Watershed();
            else if (rbPrySegmentation.Checked)
                txtResult.Text += PrySegmentation();
            else if (rbPryMeanShiftFiltering.Checked)
                txtResult.Text += PryMeanShiftFiltering();
        }

        /// 
        /// 分水岭算法图像分割
        /// 
        /// 返回用时
        private string Watershed()
        {
            //分水岭算法分割
            Image imageMarkers2 = imageMarkers.Copy();
            Stopwatch sw = new Stopwatch();
            sw.Start();
            CvInvoke.cvWatershed(imageSource.Ptr, imageMarkers2.Ptr);
            sw.Stop();
            //将分割的结果转换到256级灰度图像
            pbResult.Image = imageMarkers2.Bitmap;
            imageMarkers2.Dispose();
            return string.Format("分水岭图像分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }

        /// 
        /// 金字塔分割算法
        /// 
        /// 
        private string PrySegmentation()
        {
            //准备参数
            Image imageDest = new Image(imageSource.Size);
            MemStorage storage = new MemStorage();
            IntPtr ptrComp = IntPtr.Zero;
            int level = int.Parse(txtPSLevel.Text);
            double threshold1 = double.Parse(txtPSThreshold1.Text);
            double threshold2 = double.Parse(txtPSThreshold2.Text);
            //金字塔分割
            Stopwatch sw = new Stopwatch();
            sw.Start();
            CvInvoke.cvPyrSegmentation(imageSource.Ptr, imageDest.Ptr, storage.Ptr, out ptrComp, level, threshold1, threshold2);
            sw.Stop();
            //显示结果
            pbResult.Image = imageDest.Bitmap;
            //释放资源
            imageDest.Dispose();
            storage.Dispose();
            return string.Format("金字塔分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }

        /// 
        /// 均值漂移分割算法
        /// 
        /// 
        private string PryMeanShiftFiltering()
        {
            //准备参数
            Image imageDest = new Image(imageSource.Size);
            double spatialRadius = double.Parse(txtPMSFSpatialRadius.Text);
            double colorRadius = double.Parse(txtPMSFColorRadius.Text);
            int maxLevel = int.Parse(txtPMSFNaxLevel.Text);
            int maxIter = int.Parse(txtPMSFMaxIter.Text);
            double epsilon = double.Parse(txtPMSFEpsilon.Text);
            MCvTermCriteria termcrit = new MCvTermCriteria(maxIter, epsilon);
            //均值漂移分割
            Stopwatch sw = new Stopwatch();
            sw.Start();
            OpenCvInvoke.cvPyrMeanShiftFiltering(imageSource.Ptr, imageDest.Ptr, spatialRadius, colorRadius, maxLevel, termcrit);
            sw.Stop();
            //显示结果
            pbResult.Image = imageDest.Bitmap;
            //释放资源
            imageDest.Dispose();
            return string.Format("均值漂移分割,用时:{0:F05}毫秒。\r\n", sw.Elapsed.TotalMilliseconds);
        }

        /// 
        /// 当改变金字塔分割的参数“金字塔层数”时,对参数进行校验
        /// 
        /// 
        /// 
        private void txtPSLevel_TextChanged(object sender, EventArgs e)
        {
            int level = int.Parse(txtPSLevel.Text);
            if (level < 1 || imageSource.Width % (int)(Math.Pow(2, level - 1)) != 0 || imageSource.Height % (int)(Math.Pow(2, level - 1)) != 0)
                MessageBox.Show(this, "注意:您输入的金字塔层数不符合要求,计算结果可能会无效。", "金字塔层数错误");
        }

        /// 
        /// 当改变均值漂移分割的参数“金字塔层数”时,对参数进行校验
        /// 
        /// 
        /// 
        private void txtPMSFNaxLevel_TextChanged(object sender, EventArgs e)
        {
            int maxLevel = int.Parse(txtPMSFNaxLevel.Text);
            if (maxLevel < 0 || maxLevel > 8)
                MessageBox.Show(this, "注意:均值漂移分割的金字塔层数只能在0至8之间。", "金字塔层数错误");
        }
    }
}


你可能感兴趣的:(图像处理)