常见排序算法总结(实现原理,稳定度,使用场景,时间复杂度)

排序算法总结:实现原理,时间复杂度,使用场景,稳定度。

冒泡排序的实现原理:比较简单,不做叙述。

 稳定性: 稳定

使用场景:适用于n较小的情况。

选择排序的实现原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

 稳定性:不稳定。比如序列5 8 5 2 9,第一遍选择第1个元素5会和2交换,那么原序列中25的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。

 使用场景:适用于n较小的情况。运行时间和输入无关。

插入排序的实现原理:

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入

稳定性:稳定

最好情况:本就是有序序列。

使用场景:数据量小时使用。并且大部分已经被排序。

归并排序的实现原理:将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。 

  稳定性:稳定

  使用场景:如果需要稳定,空间不是很重要,就选择归并排序。

快速排序的实现原理:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

 稳定性:不稳定

 最坏情况:

 使用场景:是最快的通用排序算法,大多数使用情况下,是最佳选择。

堆排序:

堆排序稳定性
堆排序是不稳定的算法,它不满足稳定算法的定义。它在交换数据的时候,是比较父结点和子节点之间的数据,所以,即便是存在两个数值相等的兄弟节点,它们的相对顺序在排序也可能发生变化。

计数排序的实现原理:

  稳定性:稳定

当输入的元素是 n 0 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法

桶排序:    

实现原理:它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

(1)n较小(n≤50),可采用直接插入或直接选择排序。

当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。

(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)
n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的  排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

常见排序算法总结(实现原理,稳定度,使用场景,时间复杂度)_第1张图片

 

 有些内容来自于其他人的博客,自己的纸质笔记。

 

 



你可能感兴趣的:(常见排序算法总结(实现原理,稳定度,使用场景,时间复杂度))