- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- DeepSeek选择方向的优势
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能deepseekAIWritePaper机器学习大数据
DeepSeek选择方向的优势在学术研究与论文发表的征程中,DeepSeek凭借其独特的优势,正逐渐成为研究者们不可或缺的得力助手。以下将从多个维度深入剖析DeepSeek选择方向的卓越之处。一、高效的数据处理能力DeepSeek能够迅速处理海量数据,自动识别数据模式,精准定位关键趋势与关联。这一能力使研究者无需耗费大量时间在数据的海洋中苦苦搜寻,从而为论文研究节省宝贵时间,显著提升研究效率。二、
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- Deep Lake:人工智能时代的数据湖
开源项目精选
人工智能
DeepLake是一款由Activeloop开发的开源深度学习数据湖,旨在解决深度学习数据管理的挑战。它提供高效的多模态数据管理、类似Git的版本控制、强大的查询和可视化功能,并与MLOps生态系统无缝集成,助你轻松驾驭海量数据,加速模型训练!Stars数8,458Forks数652主要特点多模态数据支持:支持图像、视频、音频、文本、点云等各种数据类型。张量存储:以深度学习框架友好的张量格式存储数
- AIGC是怎么为拥有5000家门店的行业头部企业做内容分发?
Tezign_space
AIGC人工智能科技经验分享传媒音视频
在AI的发展过程中,我们也曾走过弯路。最初,我们都沉浸在通过海量数据训练出超级智能的幻想中,但随着时间的推移,我们逐渐意识到,在商业应用中,技术的稳定性和可靠性远比单纯的先进性更为重要。特别是在面向企业的应用场景中,客户需要的是稳定、可靠的服务,而不是可能出错的概率性结果。所以,我们现在需要做的是将工程技术与AI进行深度融合。通过工程手段来提升AI的稳定性和降低成本,这样我们才能在商业场景中更好地
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- ClickHouse 作用,优缺点。
mldsh13
clickhouse
ClickHouseClickHouse是一个开源的分布式列式数据库管理系统(DBMS),专门设计用于实时分析(OLAP)。它最初由俄罗斯的Yandex开发,后来成为了开源项目,被广泛应用于需要高性能数据分析和查询的场景。作用:实时分析:ClickHouse专注于快速查询和分析大量数据,使其特别适用于数据分析、报告和实时仪表板等应用场景。大规模数据处理:能够处理海量数据,支持分布式架构,可以水平扩
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- AI-NAS:当存储遇上智能,开启数据管理新纪元
DeepSeek+NAS
人工智能大数据winnas安卓nasWindowsnasAINAS
在数据爆炸的时代,NAS(网络附加存储)已成为个人和企业存储海量数据的利器。然而,面对日益庞大的数据量,传统的NAS系统在文件管理和搜索效率上逐渐力不从心。AI-NAS应运而生,它将NAS与人工智能(AI)能力深度融合,为数据管理带来革命性的变化。AI-NAS的核心优势在于其智能化能力:智能文件分类与整理:告别繁琐的手动分类,AI-NAS能够自动识别文件类型、内容,并根据预设规则或学习用户习惯,将
- SQL Server 性能优化最佳实践
Morris只会敲命令
性能优化
引言在数据驱动的业务场景中,SQLServer作为企业级关系型数据库的核心,其性能直接影响业务系统的吞吐量和响应速度。无论是应对高并发交易、复杂分析查询,还是处理海量数据写入,性能瓶颈往往隐藏在索引设计、查询逻辑、锁竞争或资源配置中。本文将深入剖析SQLServer性能优化的关键技术,从诊断工具使用到实战调优策略,提供一套完整的优化闭环方案。一、性能分析:定位瓶颈的科学方法1.1内置监控工具实战1
- 数据集与云计算:云端数据集的管理与应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大数据时代的数据挑战步入21世纪,我们见证了信息技术的爆炸式增长,数据以前所未有的速度产生、存储和使用。从社交媒体互动到科学研究,从电子商务交易到物联网传感器,各行各业都被海量数据所淹没。这种数据爆炸式增长带来了前所未有的机遇和挑战。1.1.1机遇:数据驱动型决策数据的激增为企业和组织提供了前所未有的洞察力。通过分析和理解这些数据,我们可以识别趋势、预测未来行为并做出更明智的决策
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop介绍:什么是Hadoop?了解Hadoop的应用
Zzzxt007
hadoop大数据分布式
一、认识Hadoop框架Hadoop是一个提供分布式存储和计算的开源软件框架,使用Java语言编写,具有高扩展性、高容错性、无共享和高可用(HA)等特点,非常适合处理海量数据。它基于Google发布的MapReduce论文实现,并且应用了函数式编程的思想。Hadoop框架主要包括HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)、MapReduce、YA
- Linux grep 命令到底有多强?90% 的人只会用最简单的用法!
linux
前言:别再傻傻地翻文件了!grep让你效率翻倍!你有没有遇到过这种情况?日志文件太大,想找某个关键字,翻得眼花缭乱?代码里某个变量到底在哪改的,找半天都没找到?成百上千个文件里,想找某个特定的内容,手动翻找效率太低?如果你还在一行行地Ctrl+F查找内容,那你真的该认识一下Linux里最强大的查找工具——grep!它不仅能帮你快速定位关键内容,还能支持正则匹配、多文件查找、高亮显示,让你在海量数据
- 『大模型笔记』强烈推荐OpenAI官方:推理模型最佳实践!
AI大模型前沿研究
大模型笔记人工智能OpenAI推理模型GPTGPTo1GPTo3ChatGPT
『大模型笔记』强烈推荐OpenAI官方:推理模型最佳实践!文章目录一.OpenAI官方:推理模型最佳实践推理模型vs.GPT模型选择指南二.何时使用我们的推理模型1.处理模糊不清的任务2.从海量信息中精准提取关键信息3.在海量数据集中发现关系和细微差别4.多步骤自主规划5.视觉推理6.代码审查、调试与质量提升7.评估与基准测试其他模型的响应如何有效提示推理模型其他资源一.OpenAI官方:推理模型
- TopK问题
K. Bob
大数据
海量数据中寻找TopK问题TopK问题介绍TopK问题举例及解答TopK问题介绍 所谓的TopK问题:在海量数据中找出出现频率最好的前K个数,或者从海量数据中找出最大的前K个数。例如,在搜索引擎中,统计搜索最热门的10个查询词/在歌曲库中统计下载最高的前10首歌等。针对TopK问题,通常方案是分治+Trie树/Hash+小顶堆,即先将数据集按照Hash方法分解成多个小数据集,然后使用Trie树/
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- 时序数据库 TDengine 化工新签约:存储降本一半,查询提速十倍
涛思数据(TDengine)
时序数据库tdengine人工智能
化工行业在数字化转型过程中面临数据接入复杂、实时性要求高、系统集成难度大等诸多挑战。福州力川数码科技有限公司科技依托深厚的行业积累,精准聚焦行业痛点,并携手TDengine提供高效解决方案。通过应用TDengine,力川科技助力化工企业实现了海量数据的低成本、高效存储与处理,同时达到了毫秒级实时监控,为安全生产和智能决策提供强有力的支撑。具体来说,本次合作不仅使存储成本降低50%以上,查询效率提升
- 海量数据融合互通丨TiDB 在安徽省住房公积金监管服务平台的应用实践
TiDB_PingCAP
tidbhtap分布式
导读安徽省住房公积金监管服务平台通过整合全省17家公积金中心的数据,致力于实现数据共享、规范化管理与高效数据分析。为了应对海量数据处理需求,安徽省选择TiDB作为底层数据库,利用其分布式架构和HTAP能力,实现了快速的数据分析与治理。TiDB的高效性能提升了平台的数据处理能力和查询效率,为全省公积金数据的统一管理与共享提供了有力支持。本文将详细介绍TiDB在平台中的应用与实际效果,以及TiDB如何
- 探索大数据分析的无限可能:R语言的应用与实践
Echo_Wish
大数据数据分析r语言数据挖掘
探索大数据分析的无限可能:R语言的应用与实践随着数据时代的来临,大数据已经成为各行各业的重要资产。如何从海量数据中挖掘出有价值的信息,成为了企业和研究人员关注的焦点。在众多的数据分析工具中,R语言因其强大的统计分析功能和丰富的生态系统,备受青睐。本文将深入探讨使用R语言进行大数据分析的方法和实践,并通过实例代码加以说明。为什么选择R语言?R语言是一种专门用于统计分析和数据可视化的编程语言,具有以下
- 大数据与物联网(IoT)的完美融合:驱动智能新时代
Echo_Wish
大数据高阶实战秘籍大数据物联网python人工智能
大数据与物联网(IoT)的完美融合:驱动智能新时代大家好,我是你们的大数据探索者Echo_Wish。今天,我们将深入探讨大数据与物联网(IoT)整合的重要性及其在现代科技中的应用。物联网通过连接大量智能设备,生成海量数据;而大数据技术则赋予我们从这些数据中提取有价值信息的能力。当两者结合在一起时,能够为各行各业带来革命性的变化,推动智能时代的到来。一、大数据与物联网的基本概念1.物联网(IoT)物
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 从数据中挖掘洞见:初探数据挖掘的艺术与科学
Echo_Wish
大数据数据挖掘人工智能
从数据中挖掘洞见:初探数据挖掘的艺术与科学在当今信息爆炸的时代,我们每天都被海量数据所包围。这些数据不仅记录了我们每天的生活轨迹,还蕴含着无数潜在的模式和洞见。作为大数据领域的自媒体创作者,我笔名Echo_Wish,在这篇文章中,我将带领大家初探数据挖掘的奥秘,揭示如何从数据中寻找隐藏的模式。什么是数据挖掘?数据挖掘(DataMining),顾名思义,就是从大量数据中“挖掘”出有价值的信息和模式。
- 狂赞!海量数据迁移方案,免费送给你
无意摘花
java经验积累mysql数据迁移
一、背景在创业初期,为了快速把项目搭建运行起来,往往不会过多地去考虑系统是否可以支持未来更大的数据吞吐量,所以往往不会分表或分库。可当项目真正运行了一年两年之后,会发现原来的单表已经存储不了更多的数据了,或者查询性能受到影响,此时就要考虑分库或分表了。一般涉及到分库分表,数据迁移是必须要做的一个工作。那么接下来,笔者就以自己亲身实践过的一次数据迁移经验为依据,向大家介绍一下,当数据量过亿时,进行数
- 搜广推校招面经三十六
Y1nhl
搜广推面经机器学习人工智能算法python深度学习pytorch推荐算法
快手推荐算法一、有10亿个数据量如何快速做召回在推荐系统的召回阶段,面对海量数据(如10亿条记录),需要快速筛选出与目标用户相关的候选物品集合。由于数据规模巨大,直接对所有数据进行计算是不现实的,因此需要设计高效的召回策略。1.1.核心挑战数据规模大:10亿级别的数据无法直接加载到内存中。实时性要求高:召回过程通常需要在毫秒级完成。稀疏性问题:用户行为数据通常是稀疏的,导致相似性计算复杂度增加。多
- 别错过!Python 爬虫微专业完结撒花,海量实战干货打包带走
七七知享
Python从入门到精通python爬虫开发语言职场和发展程序人生学习方法改行学it
在数字化浪潮汹涌澎湃的当下,数据已然成为驱动各行业前行的关键燃料。而Python高级爬虫工程师,正是高效采集海量数据的先锋力量。微专业Python高级爬虫工程师课程重磅来袭,如今已完美收官!本课程精心搭建系统架构,从基础语法的深度剖析,到网络请求、数据解析、反爬虫策略等核心技能的传授,逐步引领学员攀登技术高峰。课堂上,讲师凭借丰富实战经验,结合前沿案例,将晦涩理论转化为生动实践,助力学员轻松掌握。
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj