一、类和实例
类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”。每个对象拥有相同的方法,但各自的数据可能不同
1.创建类和实例
定义类使用class关键字,以Student类为例
class Student(object):
pass
class后面是类名,一般用大写开头,紧接着是(objects),表示该类是从哪个类继承下来的,通常,如果没有合适的继承类,就使用object
类,这是所有类最终都会继承的类。
可以根据Student类创造Student实例,创建实例是使用类名+()实现的
eg:bart=Studen()
可以自由的给一个实例变量绑定属性 bart.name='Bart Simpson'
2.由于起到模板作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
注意到__init__
方法的第一个参数永远是self
,表示创建的实例本身,因此,在__init__
方法内部,就可以把各种属性绑定到self
,因为self
就指向创建的实例本身。
有了__init__
方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__
方法匹配的参数,但self
不需要传,Python解释器自己会把实例变量传进去:
>>> bart = Student('Bart Simpson', 59)
>>> bart.name
'Bart Simpson'
>>> bart.score
59
3.数据封装
面向对象编程的一个重要特点就是数据封装。在上面的Student
类中,每个实例就拥有各自的name
和score
这些数据。我们可以通过函数来访问这些数据,比如打印一个学生的成绩:
>>> def print_score(std):
... print('%s: %s' % (std.name, std.score))
...
>>> print_score(bart)
Bart Simpson: 59
但是,既然Student
实例本身就拥有这些数据,要访问这些数据,就没有必要从外面的函数去访问,可以直接在Student
类的内部定义访问数据的函数,这样,就把“数据”给封装起来了。这些封装数据的函数是和Student
类本身是关联起来的,我们称之为类的方法:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self):
print('%s: %s' % (self.name, self.score))
要定义一个方法,除了第一个参数是self
外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self
不用传递,其他参数正常传入:
>>> bart.print_score()
Bart Simpson: 59
这样一来,我们从外部看Student
类,就只需要知道,创建实例需要给出name
和score
,而如何打印,都是在Student
类的内部定义的,这些数据和逻辑被“封装”起来了,调用很容易,但却不用知道内部实现的细节。
封装的另一个好处是可以给Student
类增加新的方法,比如get_grade
:
class Student(object):
...
def get_grade(self):
if self.score >= 90:
return 'A'
elif self.score >= 60:
return 'B'
else:
return 'C'
二、访问性质
1.如果要让内部的属性不被外部访问,可以在属性名称前加两个下划线__,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print('%s: %s' % (self.__name, self.__score))
改完后 外部变量已经不能访问实例变量.__name 和.__score
2.但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name
和get_score
这样的方法:
class Student(object):
...
def get_name(self):
return self.__name
def get_score(self):
return self.__score
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score
方法:
class Student(object):
...
def set_score(self, score):
self.__score = score
三、继承和多态
1.继承
当我们定义一个class时,可以从某个现有的class中继承,新的class被称为子类,而被继承的称为基类、父类或超类
class Animal(object);
def run(self):
print('Animal is running')
当我们要编写Dog类或Cat类可以直接从Animal类继承
class Dog(Animal): class Cat(Animal):
pass pass
对于Dog
来说,Animal
就是它的父类,对于Animal
来说,Dog
就是它的子类。Cat
和Dog
类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial
实现了run()
方法,因此,Dog
和Cat
作为它的子类,什么事也没干,就自动拥有了run()
方法:
dog=Dog()
dog.run() #输出Animal is running
当然,也可以对子类增加一些方法,比如Dog类:
class Dog(Animal):
def run(self):
print('Dog is running...')
def eat(self):
print('Eating meat...')
继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog
还是Cat
,它们run()
的时候,显示的都是Animal is running...
,符合逻辑的做法是分别显示Dog is running...
和Cat is running...
,因此,对Dog
和Cat
类改进如下:
class Dog(Animal):
def run(self):
print('Dog is running...')
class Cat(Animal):
def run(self):
print('Cat is running...')
再次运行,结果如下:
Dog is running...
Cat is running...
当子类和父类都存在相同的run()
方法时,我们说,子类的run()
覆盖了父类的run()
,在代码运行的时候,总是会调用子类的run()
。这样,我们就获得了继承的另一个好处:多态。
2.要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型
判断一个变量是否是某个类型可以用isinstance()
判断:
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True
看来a
、b
、c
确实对应着list
、Animal
、Dog
这3种类型。
但是等等,试试:
>>> isinstance(c, Animal)
True
看来c
不仅仅是Dog
,c
还是Animal
!
不过仔细想想,这是有道理的,因为Dog
是从Animal
继承下来的,当我们创建了一个Dog
的实例c
时,我们认为c
的数据类型是Dog
没错,但c
同时也是Animal
也没错,Dog
本来就是Animal
的一种!
3.多态
def run_twice(animal):
animal.run()
animal.run()
当我们传入Animal
的实例时,run_twice()
就打印出:
>>> run_twice(Animal())
Animal is running...
Animal is running...
当我们传入Dog
的实例时,run_twice()
就打印出:
>>> run_twice(Dog())
Dog is running...
Dog is running...
当我们传入Cat
的实例时,run_twice()
就打印出:
>>> run_twice(Cat())
Cat is running...
Cat is running...
看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise
类型,也从Animal
派生:
class Tortoise(Animal):
def run(self):
print('Tortoise is running slowly...')
当我们调用run_twice()
时,传入Tortoise
的实例:
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...
你会发现,新增一个Animal
的子类,不必对run_twice()
做任何修改,实际上,任何依赖Animal
作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。
多态的好处就是,当我们需要传入Dog
、Cat
、Tortoise
……时,我们只需要接收Animal
类型就可以了,因为Dog
、Cat
、Tortoise
……都是Animal
类型,然后,按照Animal
类型进行操作即可。由于Animal
类型有run()
方法,因此,传入的任意类型,只要是Animal
类或者子类,就会自动调用实际类型的run()
方法,这就是多态的意思:
对于一个变量,我们只需要知道它是Animal
类型,无需确切地知道它的子类型,就可以放心地调用run()
方法,而具体调用的run()
方法是作用在Animal
、Dog
、Cat
还是Tortoise
对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal
的子类时,只要确保run()
方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
对扩展开放:允许新增Animal
子类;
对修改封闭:不需要修改依赖Animal
类型的run_twice()
等函数。
四、类属性和实例属性
由于Python是动态语言,根据类创建的实例可以任意绑定属性。
给实例绑定属性的方法是通过实例变量,或者通过self
变量:
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')
s.score = 90
但是,如果Student
类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student
类所有:
class Student(object):
name = 'Student'
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object):
... name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
从上面的例子可以看出,在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。
五、获取对象信息
1.基本类型可以用type()函数
>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>
如果一个变量指向函数或者类,也可以用type()
判断:
>>> type(abs)
<class 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>
2.
使用isinstance()
对于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()
函数。
我们回顾上次的例子,如果继承关系是:
object -> Animal -> Dog -> Husky
那么,isinstance()
就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()
然后,判断:
>>> isinstance(h, Husky)
True
没有问题,因为h
变量指向的就是Husky对象。
再判断:
>>> isinstance(h, Dog)
True
h
虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h
也还是Dog类型。换句话说,isinstance()
判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。
因此,我们可以确信,h
还是Animal类型:
>>> isinstance(h, Animal)
True
同理,实际类型是Dog的d
也是Animal类型:
>>> isinstance(d, Dog) and isinstance(d, Animal)
True
但是,d
不是Husky类型:
>>> isinstance(d, Husky)
False
能用type()
判断的基本类型也可以用isinstance()
判断:
>>> isinstance('a', str)
True
>>> isinstance(123, int)
True
>>> isinstance(b'a', bytes)
True
并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:
>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True
3.使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']
类似__xxx__
的属性和方法在Python中都是有特殊用途的,比如__len__
方法返回长度。在Python中,如果你调用len()
函数试图获取一个对象的长度,实际上,在len()
函数内部,它自动去调用该对象的__len__()
方法,所以,下面的代码是等价的:
>>> len('ABC')
3
>>> 'ABC'.__len__()
3
我们自己写的类,如果也想用len(myObj)
的话,就自己写一个__len__()
方法:
>>> class MyDog(object):
... def __len__(self):
... return 100
...
>>> dog = MyDog()
>>> len(dog)
100
剩下的都是普通属性或方法,比如lower()
返回小写的字符串:
>>> 'ABC'.lower()
'abc'
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
紧接着,可以测试该对象的属性:
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19