(最新版本)如何在CenterNet上训练自己的数据集?

环境配置

ubuntu系统的参考我这篇博文:点击进入;

一、git clone source code

从官方github仓库上把源码下下来,在pycharm上新建一个名称为“CenterNet”的工程,建好后的目录如下:
(最新版本)如何在CenterNet上训练自己的数据集?_第1张图片

二、准备数据集

2-1 在data文件夹下新建两个文件夹:food、image_and_xml;
其中food为你自己数据集的名称,我这里要做的是识别一个菜品的任务,所以命名为food,image_and_xml存放的是你所有的图片和xml文件;
注:这里的xml文件可以下载labelimg标注工具进行标注,网上一堆。

2-2 新建一个python文件,文件代码为xml_to_json,即将voc数据集的xml文件格式转为coco数据集的json文件格式,记得在运行之前要把相应的文件路径以及一些参数设置好;
注意,这里默认划分的是训练、验证和测试集,如果你不需要测试集,只需要简单的改下代码即可,不会改的评论留言下这边指导下即可。
代码如下:

# coding:utf-8
# 运行前请先做以下工作:
# pip install lxml
# 将所有的图片及xml文件存放到xml_dir指定的文件夹下,并将此文件夹放置到当前目录下
#

import os
import glob
import json
import shutil
import numpy as np
import xml.etree.ElementTree as ET

START_BOUNDING_BOX_ID = 1
save_path = "."


def get(root, name):
    return root.findall(name)


def get_and_check(root, name, length):
    vars = get(root, name)
    if len(vars) == 0:
        raise NotImplementedError('Can not find %s in %s.' % (name, root.tag))
    if length and len(vars) != length:
        raise NotImplementedError('The size of %s is supposed to be %d, but is %d.' % (name, length, len(vars)))
    if length == 1:
        vars = vars[0]
    return vars


def convert(xml_list, json_file):
    json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}
    categories = pre_define_categories.copy()
    bnd_id = START_BOUNDING_BOX_ID
    all_categories = {}
    for index, line in enumerate(xml_list):
        # print("Processing %s"%(line))
        xml_f = line
        tree = ET.parse(xml_f)
        root = tree.getroot()

        filename = os.path.basename(xml_f)[:-4] + ".jpg"
        image_id = 20190000001 + index
        size = get_and_check(root, 'size', 1)
        width = int(get_and_check(size, 'width', 1).text)
        height = int(get_and_check(size, 'height', 1).text)
        image = {'file_name': filename, 'height': height, 'width': width, 'id': image_id}
        json_dict['images'].append(image)
        #  Currently we do not support segmentation
        segmented = get_and_check(root, 'segmented', 1).text
        assert segmented == '0'
        for obj in get(root, 'object'):
            category = get_and_check(obj, 'name', 1).text
            if category in all_categories:
                all_categories[category] += 1
            else:
                all_categories[category] = 1
            if category not in categories:
                if only_care_pre_define_categories:
                    continue
                new_id = len(categories) + 1
                print(
                    "[warning] category '{}' not in 'pre_define_categories'({}), create new id: {} automatically".format(
                        category, pre_define_categories, new_id))
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, 'bndbox', 1)
            xmin = int(float(get_and_check(bndbox, 'xmin', 1).text))
            ymin = int(float(get_and_check(bndbox, 'ymin', 1).text))
            xmax = int(float(get_and_check(bndbox, 'xmax', 1).text))
            ymax = int(float(get_and_check(bndbox, 'ymax', 1).text))
            assert (xmax > xmin), "xmax <= xmin, {}".format(line)
            assert (ymax > ymin), "ymax <= ymin, {}".format(line)
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {'area': o_width * o_height, 'iscrowd': 0, 'image_id':
                image_id, 'bbox': [xmin, ymin, o_width, o_height],
                   'category_id': category_id, 'id': bnd_id, 'ignore': 0,
                   'segmentation': []}
            json_dict['annotations'].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {'supercategory': 'food', 'id': cid, 'name': cate}
        json_dict['categories'].append(cat)
    json_fp = open(json_file, 'w')
    json_str = json.dumps(json_dict)
    json_fp.write(json_str)
    json_fp.close()
    print("------------create {} done--------------".format(json_file))
    print("find {} categories: {} -->>> your pre_define_categories {}: {}".format(len(all_categories),
                                                                                  all_categories.keys(),
                                                                                  len(pre_define_categories),
                                                                                  pre_define_categories.keys()))
    print("category: id --> {}".format(categories))
    print(categories.keys())
    print(categories.values())


if __name__ == '__main__':
    # 定义你自己的类别
    classes = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff']
    pre_define_categories = {}
    for i, cls in enumerate(classes):
        pre_define_categories[cls] = i + 1
    # 这里也可以自定义类别id,把上面的注释掉换成下面这行即可
    # pre_define_categories = {'a1': 1, 'a3': 2, 'a6': 3, 'a9': 4, "a10": 5}
    only_care_pre_define_categories = True  # or False

    # 保存的json文件
    save_json_train = 'train_food.json'
    save_json_val = 'val_food.json'
    save_json_test = 'test_food.json'

    # 初始文件所在的路径
    xml_dir = "./image_and_xml"
    xml_list = glob.glob(xml_dir + "/*.xml")
    xml_list = np.sort(xml_list)

    # 打乱数据集
    np.random.seed(100)
    np.random.shuffle(xml_list)

    # 按比例划分打乱后的数据集
    train_ratio = 0.8
    val_ratio = 0.1
    train_num = int(len(xml_list) * train_ratio)
    val_num = int(len(xml_list) * val_ratio)
    xml_list_train = xml_list[:train_num]
    xml_list_val = xml_list[train_num: train_num+val_num]
    xml_list_test = xml_list[train_num+val_num:]

    # 将xml文件转为coco文件,在指定目录下生成三个json文件(train/test/food)
    convert(xml_list_train, save_json_train)
    convert(xml_list_val, save_json_val)
    convert(xml_list_test, save_json_test)

    # # 将图片按照划分后的结果进行存放
    # if os.path.exists(save_path + "/annotations"):
    #     shutil.rmtree(save_path + "/annotations")
    # os.makedirs(save_path + "/annotations")
    # if os.path.exists(save_path + "/images_divide/train"):
    #     shutil.rmtree(save_path + "/images_divide/train")
    # os.makedirs(save_path + "/images_divide/train")
    # if os.path.exists(save_path + "/images_divide/val"):
    #     shutil.rmtree(save_path + "/images_divide/val")
    # os.makedirs(save_path + "/images_divide/val")
    # if os.path.exists(save_path + "/images_divide/test"):
    #     shutil.rmtree(save_path + "/images_divide/test")
    # os.makedirs(save_path + "/images_divide/test")

    # # 按需执行,生成3个txt文件,存放相应的文件名称
    # f1 = open("./train.txt", "w")
    # for xml in xml_list_train:
    #     img = xml[:-4] + ".jpg"
    #     f1.write(os.path.basename(xml)[:-4] + "\n")
    #     shutil.copyfile(img, save_path + "/images_divide/train/" + os.path.basename(img))
    #
    # f2 = open("val.txt", "w")
    # for xml in xml_list_val:
    #     img = xml[:-4] + ".jpg"
    #     f2.write(os.path.basename(xml)[:-4] + "\n")
    #     shutil.copyfile(img, save_path + "/images_divide/val/" + os.path.basename(img))
    #
    # f3 = open("test.txt", "w")
    # for xml in xml_list_val:
    #     img = xml[:-4] + ".jpg"
    #     f2.write(os.path.basename(xml)[:-4] + "\n")
    #     shutil.copyfile(img, save_path + "/images_divide/test/" + os.path.basename(img))
    #
    # f1.close()
    # f2.close()
    # f3.close()

    print("-" * 50)
    print("train number:", len(xml_list_train))
    print("val number:", len(xml_list_val))
    print("test number:", len(xml_list_val))

运行完之后,会得到三个json文件,分别代表训练,测试和验证。

2-3 进入到food数据集下,新建两个文件夹:images和annotations:
images:存放你的所有图片文件;
annotations:把上一步生成的三个json文件复制或剪切到这个文件夹下;
(最新版本)如何在CenterNet上训练自己的数据集?_第2张图片

三、修改配置信息

3-1 计算所有的图片的均值和标准差,直接将图片存放到同一个文件夹,把路径改下即可:

import cv2, os, argparse
import numpy as np
from tqdm import tqdm


def main():
    dirs = r'F:\Pycharm Professonal\CenterNet\CenterNet\data\food\images'  # 修改你自己的图片路径
    img_file_names = os.listdir(dirs)
    m_list, s_list = [], []
    for img_filename in tqdm(img_file_names):
        img = cv2.imread(dirs + '/' + img_filename)
        img = img / 255.0
        m, s = cv2.meanStdDev(img)
        m_list.append(m.reshape((3,)))
        s_list.append(s.reshape((3,)))
    m_array = np.array(m_list)
    s_array = np.array(s_list)
    m = m_array.mean(axis=0, keepdims=True)
    s = s_array.mean(axis=0, keepdims=True)
    print("mean = ", m[0][::-1])
    print("std = ", s[0][::-1])


if __name__ == '__main__':
    main()

mean =  [0.43708543 0.4406526  0.42904118]
std =  [0.25848474 0.25735703 0.2562089 ]

3-2 写一个数据类
到src/lib/datasets/dataset目录下,新建一个python文件,这里需要自己写一个数据类,我这里命名为food.py,;
(1)第14行的类名改为自己的类型名,这里定义为Food;
(2)第15行的num_class改为自己数据集的类别数;
(3)第16行的default_resolution为默认的分辨率,这里按原作者给出的[512, 512],如果觉得自己的硬件设备跟不上,可以适当的改小,注意上面所计算出来的整个数据集的均值和标准差也要同步;
(4)第17-20行的均值和方差填上去;
(5)第23行super类的继承改为你自己定义的类名称;
(6)修改读取json文件的路径;
(7)修改类别名字和id;
总的可参考下面的代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import pycocotools.coco as coco
from pycocotools.cocoeval import COCOeval
import numpy as np
import json
import os

import torch.utils.data as data


class Food(data.Dataset):
    num_classes = 6
    default_resolution = [512, 512]
    mean = np.array([0.472459, 0.475080, 0.482652],
                    dtype=np.float32).reshape((1, 1, 3))
    std = np.array([0.255084, 0.254665, 0.257073],
                   dtype=np.float32).reshape((1, 1, 3))

    def __init__(self, opt, split):
        super(Food, self).__init__()
        self.data_dir = os.path.join(opt.data_dir, 'food')
        self.img_dir = os.path.join(self.data_dir, 'images')
        if split == 'val':
            self.annot_path = os.path.join(
                self.data_dir, 'annotations', 'val_food.json')
        else:
            if opt.task == 'exdet':
                self.annot_path = os.path.join(
                    self.data_dir, 'annotations', 'train_food.json')
            if split == 'test':
                self.annot_path = os.path.join(
                    self.data_dir, 'annotations', 'test_food.json')
            else:
                self.annot_path = os.path.join(
                    self.data_dir, 'annotations', 'train_food.json')
        self.max_objs = 128
        self.class_name = [
            '__background__', 'aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff']
        self._valid_ids = [1, 2, 3, 4, 5, 6]
        self.cat_ids = {v: i for i, v in enumerate(self._valid_ids)}
        self.voc_color = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32) \
                          for v in range(1, self.num_classes + 1)]
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        # self.mean = np.array([0.485, 0.456, 0.406], np.float32).reshape(1, 1, 3)
        # self.std = np.array([0.229, 0.224, 0.225], np.float32).reshape(1, 1, 3)

        self.split = split
        self.opt = opt

        print('==> initializing food {} data.'.format(split))
        self.coco = coco.COCO(self.annot_path)
        self.images = self.coco.getImgIds()
        self.num_samples = len(self.images)

        print('Loaded {} {} samples'.format(split, self.num_samples))

    @staticmethod
    def _to_float(x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        # import pdb; pdb.set_trace()
        detections = []
        for image_id in all_bboxes:
            for cls_ind in all_bboxes[image_id]:
                category_id = self._valid_ids[cls_ind - 1]
                for bbox in all_bboxes[image_id][cls_ind]:
                    bbox[2] -= bbox[0]
                    bbox[3] -= bbox[1]
                    score = bbox[4]
                    bbox_out = list(map(self._to_float, bbox[0:4]))

                    detection = {
                        "image_id": int(image_id),
                        "category_id": int(category_id),
                        "bbox": bbox_out,
                        "score": float("{:.2f}".format(score))
                    }
                    if len(bbox) > 5:
                        extreme_points = list(map(self._to_float, bbox[5:13]))
                        detection["extreme_points"] = extreme_points
                    detections.append(detection)
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(save_dir, "results.json")
        # detections  = self.convert_eval_format(results)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        coco_dets = self.coco.loadRes('{}/results.json'.format(save_dir))
        coco_eval = COCOeval(self.coco, coco_dets, "bbox")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

3-3 将数据集加入src/lib/datasets/dataset_factory里面

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from .sample.ddd import DddDataset
from .sample.exdet import EXDetDataset
from .sample.ctdet import CTDetDataset
from .sample.multi_pose import MultiPoseDataset

from .dataset.coco import COCO
from .dataset.pascal import PascalVOC
from .dataset.kitti import KITTI
from .dataset.coco_hp import COCOHP
from .dataset.food import Food


dataset_factory = {
  'coco': COCO,
  'pascal': PascalVOC,
  'kitti': KITTI,
  'coco_hp': COCOHP,
  'food': Food
}

_sample_factory = {
  'exdet': EXDetDataset,
  'ctdet': CTDetDataset,
  'ddd': DddDataset,
  'multi_pose': MultiPoseDataset
}


def get_dataset(dataset, task):
    class Dataset(dataset_factory[dataset], _sample_factory[task]):
        pass
    return Dataset

3-4 在/src/lib/opts.py文件中修改

    self.parser.add_argument('--dataset', default='food',
                             help='food | coco | kitti | coco_hp | pascal')

3-5 修改ctdet任务使用的默认数据集为新添加的数据集,如下(修改分辨率,类别数,均值,标准差,数据集名字):
第336行,改下ctdet的init初始化信息。

  def init(self, args=''):
    default_dataset_info = {
      'ctdet': {'default_resolution': [512, 512], 'num_classes': 6,
                'mean': [0.472459, 0.475080, 0.482652], 'std': [0.255084, 0.254665, 0.257073],
                'dataset': 'food'},

3-6 修改src/lib/utils/debugger.py文件(变成自己数据的类别和名字,前后数据集名字一定保持一致)
(1)第45行下方加入两行:

    elif num_classes == 6 or dataset == 'food':
      self.names = food_class_name

(2)第460行下方加入自己所定义的类别,不包含背景:

food_class_name = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff']

四、训练数据

在./src/目录下,运行main.py文件,这里food改成你自己要保存的实验结果文件夹名称即可:
4.1.1 不加载预训练权重:

python main.py ctdet --exp_id food --batch_size 32 --lr 1.25e-4  --gpus 0

4.1.2 加载预训练权重:

python main.py ctdet --exp_id food --batch_size 32 --lr 1.25e-4  --gpus 0 --load_model ../models/ctdet_dla_2x.pth

4.1.3 多卡训练,其中master_batch_sizes 表示的是你在主GPU上要放置多大的batch_size,其余分配到其它卡上:

python main.py ctdet --exp_id food --batch_size 32 --lr 1.25e-4  --gpus 0,1 --load_model ../models/ctdet_dla_2x.pth --master_batch_size 8

4.1.4 断点恢复训练,比如你将结果保存在这个exp_id=food,那么food文件夹下就会有model_last.pth这个,想继续恢复训练:

python main.py ctdet --exp_id food --batch_size 32 --lr 1.25e-4  --gpus 0 --resume

若提示报错,则尝试修改opts文件中的num_workers改为0,或者将batch_size调小。
训练完成后,在./exp/ctdet/food/文件夹下会出现一堆文件;
其中,model_last是最后一次epoch的模型;model_best是val最好的模型;

五、验证模型

运行demo文件检查下训练的模型,–demo设置你要预测的图片/图片文件夹/视频所在的路径;

5.1 原始预测

python demo.py ctdet --demo ../data/food/images/food1.jpg  --load_model ../exp/ctdet/food/model_best.pth

5.2 带数据增强预测

python demo.py ctdet --demo ../data/food/images/food1.jpg  --load_model ../exp/ctdet/food/model_best.pth --flip_test

5.3 多尺度预测

python demo.py ctdet --demo ../data/food/images/food1.jpg  --load_model ../exp/ctdet/food/model_best.pth --test_scales 0.5,0.75,1.0,1.25,1.5

注意,如果多尺度预测报错,一般就是你自己没有编译nms。
编译方法:到 path/to/CenterNet/src/lib/externels 目录下,运行:

python setup.py build_ext --inplace

如果需要保存你的预测结果,可以到目录 path/to/CenterNet/src/lib/detecors/ctdet.py下,在show_results函数中的末尾加入这句:

# path替换成你所需要保存的路径,并确定这个文件夹是否存在
debugger.save_all_imgs(path='/CenterNet-master/outputs', genID=True)

六、测试数据

python test.py --exp_id food --not_prefetch_test ctdet --load_model ../CenterNet/exp/ctdet/food/model_best.pth

七、批量保存每张图片的预测的结果(bbox,id,score)

7.1 进入到CenterNet/src/lib/utils/debugger.py,Ctrl+F找到add_coco_bbox()这个方法,将方法替换为:

    def add_coco_bbox(self, bbox, cat, conf=1, show_txt=True, img_id='default'):
        bbox = np.array(bbox, dtype=np.int32)
        # cat = (int(cat) + 1) % 80

        cat = int(cat)
        # print('cat', cat, self.names[cat])
        c = self.colors[cat][0][0].tolist()
        if self.theme == 'white':
            c = (255 - np.array(c)).tolist()
        txt = '{}{:.1f}'.format(cat, conf)
        bbox_info = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
        info = [bbox_info, self.names[cat], float(conf)]
        font = cv2.FONT_HERSHEY_SIMPLEX
        cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
        cv2.rectangle(
            self.imgs[img_id], (bbox[0], bbox[1]), (bbox[2], bbox[3]), c, 2)
        if show_txt:
            cv2.rectangle(self.imgs[img_id],
                          (bbox[0], bbox[1] - cat_size[1] - 2),
                          (bbox[0] + cat_size[0], bbox[1] - 2), c, -1)
            cv2.putText(self.imgs[img_id], txt, (bbox[0], bbox[1] - 2),
                        font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
        return info

这里info便保存了每张图片的每个预测框,对应的类别和置信度信息。

7.2- 进入到CenterNet/src/lib/detectors/ctdet.py,这个文件夹当中,找到show_results这个方法,替换为:

    def show_results(self, debugger, image, results):
        debugger.add_img(image, img_id='ctdet')
        infos = []
        for j in range(1, self.num_classes + 1):
            for bbox in results[j]:
                if bbox[4] > self.opt.vis_thresh:
                    info = debugger.add_coco_bbox(bbox[:4], j - 1, bbox[4], img_id='ctdet')
                    infos.append(info)
        debugger.show_all_imgs(pause=self.pause)
        return infos

7.3 进入到CenterNet/src/lib/detectors/base_detector.py,找到run这个方法,替换为:

def run(self, image_or_path_or_tensor, meta=None):
        load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0
        merge_time, tot_time = 0, 0
        debugger = Debugger(dataset=self.opt.dataset, ipynb=(self.opt.debug == 3),
                            theme=self.opt.debugger_theme)
        start_time = time.time()
        pre_processed = False
        if isinstance(image_or_path_or_tensor, np.ndarray):
            image = image_or_path_or_tensor
        elif type(image_or_path_or_tensor) == type(''):
            image = cv2.imread(image_or_path_or_tensor)
        else:
            image = image_or_path_or_tensor['image'][0].numpy()
            pre_processed_images = image_or_path_or_tensor
            pre_processed = True

        loaded_time = time.time()
        load_time += (loaded_time - start_time)

        detections = []
        for scale in self.scales:  # scales = [1]
            scale_start_time = time.time()
            if not pre_processed:
                # 运行这里
                images, meta = self.pre_process(image, scale, meta)
            else:
                # import pdb; pdb.set_trace()
                images = pre_processed_images['images'][scale][0]

                meta = pre_processed_images['meta'][scale]
                meta = {k: v.numpy()[0] for k, v in meta.items()}
            images = images.to(self.opt.device)
            torch.cuda.synchronize()
            pre_process_time = time.time()
            pre_time += pre_process_time - scale_start_time

            output, dets, forward_time = self.process(images, return_time=True)

            torch.cuda.synchronize()
            net_time += forward_time - pre_process_time
            decode_time = time.time()
            dec_time += decode_time - forward_time

            if self.opt.debug >= 2:
                self.debug(debugger, images, dets, output, scale)

            dets = self.post_process(dets, meta, scale)
            torch.cuda.synchronize()
            post_process_time = time.time()
            post_time += post_process_time - decode_time

            detections.append(dets)

        results = self.merge_outputs(detections)
        torch.cuda.synchronize()
        end_time = time.time()
        merge_time += end_time - post_process_time
        tot_time += end_time - start_time
        if self.opt.debug >= 1:
            info = self.show_results(debugger, image, results)

        return {'results': results, 'tot': tot_time, 'load': load_time,
                'pre': pre_time, 'net': net_time, 'dec': dec_time,
                'post': post_time, 'merge': merge_time}, info

7.4 最后将CenterNet/src/demo.py 这个文件的内容替换为:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import _init_paths

import os
import cv2
import json

from opts import opts
from detectors.detector_factory import detector_factory

image_ext = ['jpg', 'jpeg', 'png', 'webp']
video_ext = ['mp4', 'mov', 'avi', 'mkv']
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']


def demo():
    os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
    opt.debug = max(opt.debug, 1)
    Detector = detector_factory[opt.task]
    detector = Detector(opt)

    if opt.demo == 'webcam' or \
            opt.demo[opt.demo.rfind('.') + 1:].lower() in video_ext:
        cam = cv2.VideoCapture(0 if opt.demo == 'webcam' else opt.demo)
        detector.pause = False
        while True:
            _, img = cam.read()
            cv2.imshow('input', img)
            ret = detector.run(img)
            time_str = ''
            for stat in time_stats:
                time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat])
            print(time_str)
            if cv2.waitKey(1) == 27:
                return  # esc to quit
    else:
        if os.path.isdir(opt.demo):
            image_names = []
            ls = os.listdir(opt.demo)
            for file_name in sorted(ls):
                ext = file_name[file_name.rfind('.') + 1:].lower()
                if ext in image_ext:
                    image_names.append(os.path.join(opt.demo, file_name))
        else:
            image_names = [opt.demo]

        results = {}
        for (image_name) in image_names:
            ret, info = detector.run(image_name)
            save_name = image_name.split('/')[-1]
            results[save_name] = info
            time_str = ''
            for stat in time_stats:
                time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat])
            print(time_str)

        results_str = json.dumps(results)
        with open(opt.save_dir+"/{}.json".format(opt.exp_id), 'w') as json_file:
            json_file.write(results_str)


if __name__ == '__main__':
    opt = opts().init()
    demo()

上面将预测信息保存为一个json文件,保存路径可自己设置。

有问题欢迎评论区随时咨询提问,谢绝私聊~~~

你可能感兴趣的:(深度学习)