b.add_(2) # 以`_`结尾的函数会修改自身
print(a)
print(b) # Tensor和Numpy共享内存
[4. 4. 4. 4. 4.] # b原有数组为[2.2.2.2.2.]
tensor([4., 4., 4., 4., 4.], dtype=torch.float64)
new_tensor = old_tensor.detach()
new_tensor[0] = 1111
old_tensor, new_tensor
(tensor([1111, 4]), tensor([1111, 4]))
# 为tensor设置 requires_grad 标识,代表着需要求导数
# pytorch 会自动调用autograd 记录操作
x = t.ones(2, 2, requires_grad=True)
# 上一步等价于
# x = t.ones(2,2)
# x.requires_grad = True
x
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。
# 以下划线结束的函数是inplace操作,会修改自身的值,就像add_
x.grad.data.zero_()
tensor([[0., 0.],
[0., 0.]])
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
# 下式等价于nn.Module.__init__(self)
super(Net, self).__init__()
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5
self.conv1 = nn.Conv2d(1, 6, 5)
# 卷积层
self.conv2 = nn.Conv2d(6, 16, 5)
# 仿射层/全连接层,y = Wx + b
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 卷积 -> 激活 -> 池化
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
# reshape,‘-1’表示自适应
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
只要在nn.Module的子类中定义了 forward函数,backward函数就会自动被实现(利用autograd)。在forward 函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。
网络的可学习参数通过net.parameters()返回,net.named_parameters可同时返回可学习的参数及名称。
params = list(net.parameters())
print(len(params))
10
for name,parameters in net.named_parameters():
print(name,':',parameters.size())
conv1.weight : torch.Size([6, 1, 5, 5])
conv1.bias : torch.Size([6])
conv2.weight : torch.Size([16, 6, 5, 5])
conv2.bias : torch.Size([16])
fc1.weight : torch.Size([120, 400])
fc1.bias : torch.Size([120])
fc2.weight : torch.Size([84, 120])
fc2.bias : torch.Size([84])
fc3.weight : torch.Size([10, 84])
fc3.bias : torch.Size([10])