先举个例:
group by WITH ROLLUP
mysql> select dep,pos,avg(sal) from employee group by dep,pos with rollup;
+------+------+-----------+
| dep | pos | avg(sal) |
+------+------+-----------+
| 01 | 01 | 1500.0000 |
| 01 | 02 | 1950.0000 |
| 01 | NULL | 1725.0000 |
| 02 | 01 | 1500.0000 |
| 02 | 02 | 2450.0000 |
| 02 | NULL | 2133.3333 |
| 03 | 01 | 2500.0000 |
| 03 | 02 | 2550.0000 |
| 03 | NULL | 2533.3333 |
| NULL | NULL | 2090.0000 |
首先会根据dep变量,将原始数据分为三个01,02,03三个组,从数据表上看,第5,6行是一个聚合,group by WITH ROLLUP会在每个分组后面加上本组类的信息,di7行数据就是5,6行数据聚合所执行avg(sal)所得的结果,依次类推,02,03也是一样,同时在最后,会将全部的分组聚合。
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
等价于
SELECT
month,
NULL,
COUNT(DISTINCT cookieid) AS uv,
1 AS GROUPING__ID
FROM lxw1234
GROUP BY month
UNION ALL
SELECT
NULL,
day,
COUNT(DISTINCT cookieid) AS uv,
2 AS GROUPING__ID
FROM lxw1234
GROUP BY day
再如:
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3
等价于
SELECT month,
NULL,
COUNT(DISTINCT cookieid) AS uv,
1 AS GROUPING__ID
FROM lxw1234
GROUP BY month
UNION ALL
SELECT NULL,
day,
COUNT(DISTINCT cookieid) AS uv,
2 AS GROUPING__ID
FROM lxw1234
GROUP BY day
UNION ALL
SELECT month,
day,
COUNT(DISTINCT cookieid) AS uv,
3 AS GROUPING__ID
FROM lxw1234
GROUP BY month,day
其中的 GROUPING__ID,表示结果属于哪一个分组集合。
根据GROUP BY的维度的所有组合进行聚合。
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
--------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-16 2 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
等价于
SELECT
NULL,
NULL,
COUNT(DISTINCT cookieid) AS uv,
0 AS GROUPING__ID
FROM lxw1234
UNION ALL
SELECT
month,
NULL,
COUNT(DISTINCT cookieid) AS uv,
1 AS GROUPING__ID
FROM lxw1234
GROUP BY month
UNION ALL
SELECT
NULL,
day,
COUNT(DISTINCT cookieid) AS uv,
2 AS GROUPING__ID
FROM lxw1234
GROUP BY day
UNION ALL
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
3 AS GROUPING__ID
FROM lxw1234
GROUP BY month,day
CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合:
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH ROLLUP
ORDER BY GROUPING__ID;
month day uv GROUPING__ID
---------------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3
可以实现这样的上钻过程:月天的UV->月的UV->总UV
--把month和day调换顺序,则以day维度进行层级聚合:
SELECT
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY day,month
WITH ROLLUP
ORDER BY GROUPING__ID;
day month uv GROUPING__ID
-------------------------------------------------------
NULL NULL 7 0
2015-04-13 NULL 3 1
2015-03-12 NULL 1 1
2015-04-15 NULL 2 1
2015-03-10 NULL 4 1
2015-04-16 NULL 2 1
2015-04-12 NULL 2 1
2015-04-12 2015-04 2 3
2015-03-10 2015-03 4 3
2015-03-12 2015-03 1 3
2015-04-13 2015-04 3 3
2015-04-15 2015-04 2 3
2015-04-16 2015-04 2 3
可以实现这样的上钻过程:天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)