LeetCode: Largest Rectangle in Histogram(直方图最大面积)

具体的题目描述为:

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area =10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

这道题可以有两个解法。

解法一是穷举法,对于直方图的每一个右边界,穷举所有的左边界。将面积最大的那个值记录下来。时间复杂度为O(n^2). 单纯的穷举在LeetCode上面过大集合时会超时。可以通过选择合适的右边界,做一个剪枝(Pruning)。观察发现当height[k] >= height[k - 1]时,无论左边界是什么值,选择height[k]总会比选择height[k - 1]所形成的面积大。因此,在选择右边界的时候,首先找到一个height[k] < height[k - 1]的k,然后取k - 1作为右边界,穷举所有左边界,找最大面积。

Java代码:

  // O(n^2) with pruning
  public int largestRectangleArea1(int[] height) {
    // Start typing your Java solution below
    // DO NOT write main() function
    int area = 0;
    for (int i = 0; i < height.length; i++) {
      for (int k = i + 1; k < height.length; k++) {
        if (height[k] < height[k - 1]) {
          i = k - 1;
          break;
        } else {
          i = k;
        }
      }
      int lowest = height[i];
      for (int j = i; j >= 0; j--) {
        if (height[j] < lowest) {
          lowest = height[j];
        }
        int currArea = (i - j + 1) * lowest;
        if (currArea > area) {
          area = currArea;
        }
      }
    }
    return area;
  }

虽然上面的解法可以过大集合,但是不是最优的方法,下面介绍使用两个栈的优化解法。时间复杂度为O(n).

此解法的核心思想为:一次性计算连续递增的区间的最大面积,并且考虑完成这个区间之后,考虑其前、后区间的时候,不会受到任何影响。也就是这个连续递增区间的最小高度大于等于其前、后区间。

这个方法非常巧妙,最好通过一个图来理解:

LeetCode: Largest Rectangle in Histogram(直方图最大面积)_第1张图片

假设输入直方图为:int[] height = {2,7,5,6,4}.

这个方法运行的时候,当遇到height[2] == 5的时候,发现其比之前一个高度小,则从当前值(5)开始,向左搜索比当前值小的值。当搜索到最左边(2)时,比5小,此时计算在height[0]和height[2]之间的最大面积,注意不包括height[0]和和height[2]。height[1]以红色标出的这个区域就被计算完成。同样的方法,计算出绿色和粉色的面积。

因此这个方法需要使用两个栈。第一个栈为高度栈heightStack,用于记录还没有被计算过的连续递增的序列的值。第二个栈为下标栈indexStack,用于记录高度栈中对应的每一个高度的下标,以计算宽度。

算法具体执行的步骤为:

若heightStack为空或者当前高度大于heightStack栈顶,则当前高度和当前下标分别入站。所以heightStack记录了一个连续递增的序列。

若当前高度小于heightStack栈顶,heightStack和indexStack出栈,直到当前高度大于等于heightStack栈顶。出栈时,同时计算区间所形成的最大面积。注意计算完之后,当前值入栈的时候,其对应的下标应该为最后一个从indexStack出栈的下标。比如height[2]入栈时,其对应下标入栈应该为1,而不是其本身的下标2。如果将其本身下标2入栈,则计算绿色区域的最大面积时,会忽略掉红色区域。

Java代码:

  // O(n) using two stacks
  public int largestRectangleArea(int[] height) {
    // Start typing your Java solution below
    // DO NOT write main() function
    int area = 0;
    java.util.Stack heightStack = new java.util.Stack();
    java.util.Stack indexStack = new java.util.Stack();
    for (int i = 0; i < height.length; i++) {
      if (heightStack.empty() || heightStack.peek() <= height[i]) {
        heightStack.push(height[i]);
        indexStack.push(i);
      } else if (heightStack.peek() > height[i]) {
        int j = 0;
        while (!heightStack.empty() && heightStack.peek() > height[i]) {
          j = indexStack.pop();
          int currArea = (i - j) * heightStack.pop();
          if (currArea > area) {
            area = currArea;
          }
        }
        heightStack.push(height[i]);
        indexStack.push(j);
      }
    }
    while (!heightStack.empty()) {
      int currArea = (height.length - indexStack.pop()) * heightStack.pop();
      if (currArea > area) {
        area = currArea;
      }
    }
    return area;
  }

更新:

在网上发现另外一个使用一个栈的O(n)解法,代码非常简洁,栈内存储的是高度递增的下标。对于每一个直方图高度,分两种情况。1:当栈空或者当前高度大于栈顶下标所指示的高度时,当前下标入栈。否则,2:当前栈顶出栈,并且用这个下标所指示的高度计算面积。而这个方法为什么只需要一个栈呢?因为当第二种情况时,for循环的循环下标回退,也就让下一次for循环比较当前高度与新的栈顶下标所指示的高度,注意此时的栈顶已经改变由于之前的出栈。

Java代码:

  // O(n) using one stack
  public int largestRectangleArea(int[] height) {
    // Start typing your Java solution below
    // DO NOT write main() function
    int area = 0;
    java.util.Stack stack = new java.util.Stack();
    for (int i = 0; i < height.length; i++) {
      if (stack.empty() || height[stack.peek()] < height[i]) {
        stack.push(i);
      } else {
        int start = stack.pop();
        int width = stack.empty() ? i : i - stack.peek() - 1;
        area = Math.max(area, height[start] * width);
        i--;
      }
    }
    while (!stack.empty()) {
      int start = stack.pop();
      int width = stack.empty() ? height.length : height.length - stack.peek() - 1;
      area = Math.max(area, height[start] * width);      
    }
    return area;
  }



你可能感兴趣的:(面试)