- 【IT大学生必会的】 10 种图表线性回归
.Boss.
深度学习开发语言人工智能机器学习算法
这段时间,不少同学提到了一些图表的问题。每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?其实这个根据你自己的需求,自己的想法来就行。今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在
- 贪心算法简介(greed)
神里流~霜灭
贪心算法精讲贪心算法c++c语言数据结构顺序表链表动态规划
前言:贪心算法(GreedyAlgorithm)是一种在每个决策阶段都选择当前最优解的算法策略,通过局部最优的累积来寻求全局最优解。其本质是"短视"策略,不回溯已做选择。什么是贪心、如何来理解贪心(个人对贪心的理解)前言对贪心是一种概念的回答。接下来就了解一下自己对贪心的理解,如果学习算法的化建议优先学习动态规划,动态规划相对于其他算法来说很简单。但是,贪心算法跟动态规划不同,非常难,贪心讲究策略
- 从公布的11批其他算法类别分析
老赵聊算法、大模型备案
人工智能机器人算法AIGC语言模型
2025年3月12日,国家网信办分别发布了深度合成算法及互联网信息服务算法备案信息(其他类别算法)的公告,其中深度合成算法3月份批次通过共计395款,其他算法种类通过45款。具体分析如下:一、算法类别:序号算法类别数量占比1个性化推送类31749%2检索过滤类20431.53%3排序精选类578.81%4调度决策类599.12%5生成合成类101.55合计jxh152637647100%从算法类别
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- Android 加解密算法工具类封装:AES、RSA、MD5 一站式解决方案
tangweiguo03051987
android算法AESDESMD5JAVA
在Android开发中,数据的安全性非常重要,尤其是敏感数据的存储和传输。为了实现数据加密和解密,我们可以封装一个通用的加解密工具类,支持常见的加密算法(如AES、RSA、DES等)。以下是一个基于AES对称加密算法的工具类封装示例,同时提供扩展性以支持其他算法。AES加解密工具类封装AES(AdvancedEncryptionStandard)是一种对称加密算法,加密和解密使用相同的密钥。以下是
- benchmark和baseline的联系与区别
Lntano__y
人工智能深度学习机器学习
在深度学习算法中,benchmark(基准)和baseline(基线)是两个常用的概念,用于评估算法的性能和进行比较。尽管它们有一些相似之处,但它们在定义和使用上有一些区别。Benchmark(基准):基准是指作为参考标准的一组算法或数据集,通常是在特定任务或领域中广泛接受的准则。基准的目标是提供一个衡量算法性能的标准,以便其他算法可以与之进行比较。基准可以是一种算法、一个数据集或者是两者的结合。
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 深度探索:机器学习中的粒子群优化算法(PBMT)原理及应用
生瓜蛋子
机器学习机器学习算法人工智能
目录一、引言与背景二、定理三、算法原理四、算法实现五、优缺点分析优点:缺点:六、案例应用七、对比与其他算法八、结论与展望一、引言与背景随着机器学习技术的迅速发展,优化算法在模型训练、特征选择、参数调优等多个环节扮演着至关重要的角色。粒子群优化(ParticleSwarmOptimization,PBMT)作为一类灵感源自鸟群觅食行为的群体智能优化算法,自1995年提出以来,因其简单、高效的特点,在
- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 经典算法之链表篇(三)
dlwlrma ⥳
LeetCode刷题算法链表数据结构
目录一:旋转链表(LeetCode.61)二:LRU缓存(LeetCode.146)有关链表的其他算法题,可以参考我上篇写的文章经典算法之链表篇(二)一:旋转链表(LeetCode.61)问题描述:给你一个链表的头节点head,旋转链表,将链表每个节点向右移动k个位置。示例:输入:head=[1,2,3,4,5],k=2输出:[4,5,1,2,3]解题思路:计算链表的长度,并找到链表的尾节点,同时
- 深度探索:机器学习中的序列到序列模型(Seq2Seq)原理及其应用
生瓜蛋子
机器学习机器学习人工智能
目录1.引言与背景2.庞特里亚金定理与动态规划3.算法原理4.算法实现5.优缺点分析优点缺点6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在当今信息爆炸的时代,机器学习作为人工智能领域的核心驱动力,正以前所未有的深度和广度渗透进我们的日常生活。从语言翻译、文本摘要、语音识别到对话系统,众多自然语言处理(NLP)任务的成功解决离不开一种强大的模型架构——序列到序列(Sequence-to
- Java基础算法之堆排序(Heap Sort)
被惦记的猫
排序算法算法排序算法堆排序
堆排序(HeapSort)1、堆介绍2、算法介绍3、图解4、代码实现5、执行结果6、其他算法1、堆介绍大顶堆:非叶子结点的数据要大于或等于其左,右子节点的数据小顶堆:非叶子结点的数据要小于或等于其左,右子节点的数据2、算法介绍先从后面的非叶子结点从后向前将结点构建成一个大顶堆(小顶堆)。此时根节点就是最大的数据(最小的数据),然后将根节点与数组最后一位进行交换。交换后再从根节点开始构建堆(此时树的
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 蓝桥杯:C++二叉树
DaveVV
蓝桥杯c++蓝桥杯c++算法数据结构c语言
二叉树几乎每次蓝桥杯软件类大赛都会考核二叉树,它或者作为数据结构题出现,或者应用在其他算法中。大部分高级数据结构是基于二叉树的,例如常用的高级数据结构线段树就是基于二叉树的。二叉树应用广泛和它的形态有关。二叉树的定义:二叉树的第1层是一个结点,称为根,它最多有两个子结点,分别是左子结点、右子结点,以它们为根的子树称为左子树、右子树。二叉树上的每个结点,都是按照这个规则逐层往下构建出来的。图3.4二
- shiro登陆时密码加盐哈希实现和简单原理
ignoHH
javashirospringbootjavashiro密码学
shiro登陆时密码加盐哈希实现版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/wy862740672/article/details/109818314实现废话不多说,开搞。此篇采用SHA-256哈希算法,采用其他算法只需要更改算法名字段。1.在shiro配置中添加对于HashedCredent
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 2019-10-10 kNN近邻算法
lqzzz
kNN近邻算法算法原理样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。KNN分类算法:“投票法”,选择这k个样本中出现最多的类别标记作为预测结果。KNN回归算法:“平均法”,将这k个样本的实值输出标记的平均值作为预测结果。欧拉距
- 字符串匹配算法--数据结构与算法之美--CH32
csdn_SUSAN
数据结构和算法字符串匹配RK算法BF算法
文章目录1.什么是字符串匹配2.如何实现字符串匹配2.1BF算法2.2.1BF算法常用原因2.2RK算法2.2.1hash算法的设计2.2.2散列冲突处理3.其他算法简介4.思考总结1.什么是字符串匹配 “字符串匹配”就是在一个长字符串A中搜索一个短的字符串B,此时A称为主串,B称为模式串。 把主串A的长度记作n,模式串B的长度记作m,因为在主串中查找模式串,所以n>m。2.如何实现字符串匹配
- 算法——滑动窗口+前缀和
debugBiubiubiu2000
数据结构和算法算法滑动窗口前缀和差分数组leetcode
在刷leetcode时,看到一道精选的题解一次搞定前缀和觉得非常有用,文章的作者总结了关于滑动窗口和前缀和的知识点,于是想着在自己的博客做个记录,方便自己后面的学习回顾。该作者的关于其他算法知识的总结:算法知识点总结滑动窗口滑动窗口这一内容复制粘贴于:滑动窗口常见套路滑动窗口主要用来处理连续问题。比如题目求解“连续子串xxxx”,“连续子数组xxxx”,就应该可以想到滑动窗口。能不能解决另说,但是
- 梯度提升树系列1——梯度提升树(GBDT)入门:基本原理及优势
theskylife
数据挖掘python机器学习数据挖掘GBDT
目录写在开头1.GBDT的基本原理1.1GBDT的定义1.2GBDT的工作机制1.2.1初始化1.2.2迭代训练1.2.3集成预测2.GBDT的优势2.1高精度预测能力2.2对各种类型数据的适应性2.3在数据不平衡情况下的优势2.4鲁棒性与泛化能力2.5特征重要性评估2.6高效处理大规模数据3.与其他算法的比较3.1与随机森林的比较3.2与支持向量机的比较3.3与神经网络的比较写在最后梯度提升树(
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- SHADE和SaDE跑CEC2017测试集
树洞优码
算法改进优化算法差分进化算法改进差分进化算法
SHADE和SaDE跑CEC2017测试集对比图,并分别连续运行30次并且输出最优值,最差值,平均值,标准差基于成功历史的参数自适应差分进化算法(SHADE)是经典的差分进化变体,该论文发表于2013年,性能非常有参考价值,可用于和其他算法进行对比试验,该算法尤其是在CEC测试集上有着优秀的表现,将此算法用作对比算法,可以极大增强试验的说服力。提升论文被录用的概率。参考文献:RyojiTanabe
- Python的hashlib模块:7种加密算法深入剖析
傻啦嘿哟
关于python那些事儿python哈希算法开发语言
目录一、引言二、哈希算法简介三、hashlib模块中的加密算法MD5SHA1SHA224/SHA256/SHA384/SHA512SHA3其他算法:四、加密算法比较与选择五、实际应用与注意事项六、总结本文将深入探讨Python的hashlib模块,重点解析其中的七种加密算法:MD5、SHA1、SHA224、SHA256、SHA384、SHA512和SHA3。我们将通过理论、代码示例和实际应用来展示
- XGBoost系列3——XGBoost在多分类问题中的应用
theskylife
数据分析数据挖掘分类数据挖掘人工智能python机器学习
目录写在开头1.多分类问题的介绍1.1什么是多分类问题?1.2多分类问题的挑战1.3XGBoost如何应对多分类问题?1.4多分类问题的应用场景2.XGBoost中的多分类支持2.1分类原理2.2Softmax损失函数2.3One-vs-All与One-vs-One2.4多分类性能优势2.5超参数调优2.6特征重要性分析2.7模型解释性2.8一个简单的例子3.对比XGBoost与其他算法在多分类任
- 【信息学奥赛一本通 提高组】第二章 二分与三分
weixin_30609287
c/c++数据结构与算法
一、二分二分法,在一个单调有序的集合或函数中查找一个解,每次分为左右两部分,判断解在那个部分并调整上下界,直到找到目标元素,每次二分都将舍弃一般的查找空间,因此效率很高。二分常见模型1、二分答案最小值最大(或是最大值最小)问题,这类双最值问题常常选用二分法求解,也就是确定答案后,配合贪心,DP等其他算法检验这个答案是否合理,将最优化问题转化为判定性问题。例如,将长度为n的序列ai分为最多m个连续段
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l