- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 经典算法之链表篇(三)
dlwlrma ⥳
LeetCode刷题算法链表数据结构
目录一:旋转链表(LeetCode.61)二:LRU缓存(LeetCode.146)有关链表的其他算法题,可以参考我上篇写的文章经典算法之链表篇(二)一:旋转链表(LeetCode.61)问题描述:给你一个链表的头节点head,旋转链表,将链表每个节点向右移动k个位置。示例:输入:head=[1,2,3,4,5],k=2输出:[4,5,1,2,3]解题思路:计算链表的长度,并找到链表的尾节点,同时
- 深度探索:机器学习中的序列到序列模型(Seq2Seq)原理及其应用
生瓜蛋子
机器学习机器学习人工智能
目录1.引言与背景2.庞特里亚金定理与动态规划3.算法原理4.算法实现5.优缺点分析优点缺点6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在当今信息爆炸的时代,机器学习作为人工智能领域的核心驱动力,正以前所未有的深度和广度渗透进我们的日常生活。从语言翻译、文本摘要、语音识别到对话系统,众多自然语言处理(NLP)任务的成功解决离不开一种强大的模型架构——序列到序列(Sequence-to
- Java基础算法之堆排序(Heap Sort)
被惦记的猫
排序算法算法排序算法堆排序
堆排序(HeapSort)1、堆介绍2、算法介绍3、图解4、代码实现5、执行结果6、其他算法1、堆介绍大顶堆:非叶子结点的数据要大于或等于其左,右子节点的数据小顶堆:非叶子结点的数据要小于或等于其左,右子节点的数据2、算法介绍先从后面的非叶子结点从后向前将结点构建成一个大顶堆(小顶堆)。此时根节点就是最大的数据(最小的数据),然后将根节点与数组最后一位进行交换。交换后再从根节点开始构建堆(此时树的
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 蓝桥杯:C++二叉树
DaveVV
蓝桥杯c++蓝桥杯c++算法数据结构c语言
二叉树几乎每次蓝桥杯软件类大赛都会考核二叉树,它或者作为数据结构题出现,或者应用在其他算法中。大部分高级数据结构是基于二叉树的,例如常用的高级数据结构线段树就是基于二叉树的。二叉树应用广泛和它的形态有关。二叉树的定义:二叉树的第1层是一个结点,称为根,它最多有两个子结点,分别是左子结点、右子结点,以它们为根的子树称为左子树、右子树。二叉树上的每个结点,都是按照这个规则逐层往下构建出来的。图3.4二
- shiro登陆时密码加盐哈希实现和简单原理
ignoHH
javashirospringbootjavashiro密码学
shiro登陆时密码加盐哈希实现版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/wy862740672/article/details/109818314实现废话不多说,开搞。此篇采用SHA-256哈希算法,采用其他算法只需要更改算法名字段。1.在shiro配置中添加对于HashedCredent
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 2019-10-10 kNN近邻算法
lqzzz
kNN近邻算法算法原理样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。KNN分类算法:“投票法”,选择这k个样本中出现最多的类别标记作为预测结果。KNN回归算法:“平均法”,将这k个样本的实值输出标记的平均值作为预测结果。欧拉距
- 字符串匹配算法--数据结构与算法之美--CH32
csdn_SUSAN
数据结构和算法字符串匹配RK算法BF算法
文章目录1.什么是字符串匹配2.如何实现字符串匹配2.1BF算法2.2.1BF算法常用原因2.2RK算法2.2.1hash算法的设计2.2.2散列冲突处理3.其他算法简介4.思考总结1.什么是字符串匹配 “字符串匹配”就是在一个长字符串A中搜索一个短的字符串B,此时A称为主串,B称为模式串。 把主串A的长度记作n,模式串B的长度记作m,因为在主串中查找模式串,所以n>m。2.如何实现字符串匹配
- 算法——滑动窗口+前缀和
debugBiubiubiu2000
数据结构和算法算法滑动窗口前缀和差分数组leetcode
在刷leetcode时,看到一道精选的题解一次搞定前缀和觉得非常有用,文章的作者总结了关于滑动窗口和前缀和的知识点,于是想着在自己的博客做个记录,方便自己后面的学习回顾。该作者的关于其他算法知识的总结:算法知识点总结滑动窗口滑动窗口这一内容复制粘贴于:滑动窗口常见套路滑动窗口主要用来处理连续问题。比如题目求解“连续子串xxxx”,“连续子数组xxxx”,就应该可以想到滑动窗口。能不能解决另说,但是
- 梯度提升树系列1——梯度提升树(GBDT)入门:基本原理及优势
theskylife
数据挖掘python机器学习数据挖掘GBDT
目录写在开头1.GBDT的基本原理1.1GBDT的定义1.2GBDT的工作机制1.2.1初始化1.2.2迭代训练1.2.3集成预测2.GBDT的优势2.1高精度预测能力2.2对各种类型数据的适应性2.3在数据不平衡情况下的优势2.4鲁棒性与泛化能力2.5特征重要性评估2.6高效处理大规模数据3.与其他算法的比较3.1与随机森林的比较3.2与支持向量机的比较3.3与神经网络的比较写在最后梯度提升树(
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- SHADE和SaDE跑CEC2017测试集
树洞优码
算法改进优化算法差分进化算法改进差分进化算法
SHADE和SaDE跑CEC2017测试集对比图,并分别连续运行30次并且输出最优值,最差值,平均值,标准差基于成功历史的参数自适应差分进化算法(SHADE)是经典的差分进化变体,该论文发表于2013年,性能非常有参考价值,可用于和其他算法进行对比试验,该算法尤其是在CEC测试集上有着优秀的表现,将此算法用作对比算法,可以极大增强试验的说服力。提升论文被录用的概率。参考文献:RyojiTanabe
- Python的hashlib模块:7种加密算法深入剖析
傻啦嘿哟
关于python那些事儿python哈希算法开发语言
目录一、引言二、哈希算法简介三、hashlib模块中的加密算法MD5SHA1SHA224/SHA256/SHA384/SHA512SHA3其他算法:四、加密算法比较与选择五、实际应用与注意事项六、总结本文将深入探讨Python的hashlib模块,重点解析其中的七种加密算法:MD5、SHA1、SHA224、SHA256、SHA384、SHA512和SHA3。我们将通过理论、代码示例和实际应用来展示
- XGBoost系列3——XGBoost在多分类问题中的应用
theskylife
数据分析数据挖掘分类数据挖掘人工智能python机器学习
目录写在开头1.多分类问题的介绍1.1什么是多分类问题?1.2多分类问题的挑战1.3XGBoost如何应对多分类问题?1.4多分类问题的应用场景2.XGBoost中的多分类支持2.1分类原理2.2Softmax损失函数2.3One-vs-All与One-vs-One2.4多分类性能优势2.5超参数调优2.6特征重要性分析2.7模型解释性2.8一个简单的例子3.对比XGBoost与其他算法在多分类任
- 【信息学奥赛一本通 提高组】第二章 二分与三分
weixin_30609287
c/c++数据结构与算法
一、二分二分法,在一个单调有序的集合或函数中查找一个解,每次分为左右两部分,判断解在那个部分并调整上下界,直到找到目标元素,每次二分都将舍弃一般的查找空间,因此效率很高。二分常见模型1、二分答案最小值最大(或是最大值最小)问题,这类双最值问题常常选用二分法求解,也就是确定答案后,配合贪心,DP等其他算法检验这个答案是否合理,将最优化问题转化为判定性问题。例如,将长度为n的序列ai分为最多m个连续段
- Nginx 如何实现负载均衡?
恒创HengHost
nginx负载均衡运维
Nginx是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器。由于其具有丰富的功能和出色的性能,Nginx广泛应用于Web开发、负载均衡、反向代理等场景。在负载均衡方面,Nginx可以实现基于轮询、IP_HASH、URL_HASH和其他算法的负载均衡。本文将详细介绍Nginx如何实现负载均衡。一、Nginx负载均衡简介负载均衡是一种将请求分发到多个服务器或应用程
- yolov5 主要流程
isserendipity
yolov5YOLO
1.介绍本文包含了有关yolov5目标检测的基本流程,包括模型训练与模型部署,旨在帮助小伙伴们建立系统的认知YOLO是"Youonlylookonce"的首字母缩写,是一个开源软件工具,它具有实时检测特定图像中物体的高效能力。YOLO算法使用卷积神经网络(CNN)模型来检测图像中的物体。该算法只需要通过给定的神经网络进行一次前向传播就能检测到图像中的所有物体。这使YOLO算法在速度上比其他算法更有
- python开源项目之五子棋
falwat
opensourcepythonpython五子棋
目录概述特色流程文件组成关于嵌入你的AI算法概述本项目实现了一个带GUI的五子棋程序,源码可以从github获取.除此之外,源码目录下还有一个命令行式的五子棋代码.特色界面使用tkinter设计;提供了一个简单的Minxmax博弈算法;游戏双方均可设置为通过鼠标人工下子;游戏双方均可设置为AI下子;游戏支持自动重复开局(方便测试AI算法);方便嵌入其他算法;流程运行gobang.py,启动程序;点
- 模拟算法(模拟算法 == 依葫芦画瓢)万字
川入
算法专栏算法模拟算法
模拟算法基本思想引入算法题替换所有的问号提莫攻击Z字形变换外观数列数青蛙基本思想 模拟算法==依葫芦画瓢解题思维要么通俗易懂,要么就是找规律,主要难度在于将思路转换为代码。特点:相对于其他算法思维,思路比较简单(没有很多的弯弯绕绕,考察的是代码能力)。大致做题流程模拟算法流程(一定要在演草纸上过一遍-容易忽略细节)把流程转换为代码引入算法题替换所有的问号链接:https://leetcode.c
- 使用numpy处理图片——模糊处理
breaksoftware
numpynumpy
大纲高斯模糊方框模糊其他算法median_filtermaximum_filterminimum_filterpercentile_filterrank_filtergaussian_laplacecorrelatemorphological_laplacewhite_tophatmorphological_gradientblack_tophat在《使用numpy处理图片——滤镜》一文中,我们尝
- 遗传算法(GA)、模拟退火算法(SAA)、蚁群算法(ACO)、粒子群算法(PSO)优缺点汇总
筱筱西雨
算法模拟退火算法机器学习遗传算法启发式算法
遗传算法优点:与问题领域无关且快速随机的搜索能力,不会陷入局部最优解;搜索从群体出发,具有潜在的并行性,提高运行速度,鲁棒性高;搜索使用评价函数启发,过程简单;使用概率机制进行迭代,具有随机性;具有可扩展性,容易与其他算法结合。缺点:1.遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码;2.另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严
- (leetcode)替换所有的问号 -- 模拟算法
Lei宝啊
算法算法模拟算法
个人主页:Lei宝啊愿所有美好如期而遇本题链接力扣(LeetCode)输入描述stringmodifyString(strings)输入一个字符串,字符串中仅包含小写字母和‘?’字符。输出描述将问号替换为小写字母,且这个替换的小写字母与他前后的字母不相同。算法分析模拟,实际上就是根据题目描述做题,不用考虑什么二分,前缀和等等,相对于其他算法比较简单,就是单纯的考察代码能力。本题我们直接循环遍历数组
- 集成学习(1)- 导论
木头里有虫911
首先明确一下为什么要进行集成学习的系统学习。我们先从机器学习说起。什么是机器学习?一言以蔽之,即一种算法。何谓算法?即通过有限的步骤解决一个问题的方法。而机器学习是一种什么样的算法呢?与其他算法不同,机器学习是通过数据来解决问题。通过学习数据中暗含的规律来预测或者分类是机器学习要解决的主要问题。如今,机器学习算法常被人们拿过来解决一些业内知名或者时间长久的老大难问题。一些问题也常被拿来作为一些比赛
- OpenVINS学习5——VioManager.cpp/h学习与注释
独孤西
SLAM学习
前言之前又看到说VioManager.cpp/h是OpenVINS中的核心程序,这次就看看这里面都写了啥,整体架构什么样,有哪些函数功能。具体介绍:VioManager类整体分析VioManager类包含MSCKF工作所需的状态和其他算法。我们将测量结果输入到此类中,并将它们发送到各自的算法。如果我们有要传播或更新的测量值,此类将调用我们的状态来执行此操作。主要包含下面6个函数/类:VioMana
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l