先给出结论:求解差分约束系统,都可以转化成图论的单源最短路径(或最长路径)问题。
我们观察上面例子中的不等式,都是x[i] - x[j] <= a[k],可以进行移项,成为x[i] <= x[j] + a[k],我们令a[k] = w(j, i),dis[i]=x[i],并使i=v,j=u,那么原始就变为:dis[u]+w(u,v)>=dis[v],于是可以联想到最短路模型中的一部分代码
if(dis[u]+w(u,v)<=dis[v])
{
dis[v]=dis[u]+w(u,v);
}
这不正与松弛操作相似吗?
但是好像不等号方向刚好相反,但其实这并不矛盾
上面的代码要实现的是使dis[u]+w(u,v)>dis[v],而对于不等式,我们进行建边的操作:对于每个不等式 x[i] - x[j] <= a[k],对结点 j 和 i 建立一条 j -> i的有向边,边权为a[k],求x[n-1] - x[0] 的最大值就是求 0 到n-1的最短路,两者刚好吻合。所以求解差分约束问题就转化为了最短路问题。
由于在求解最短路时会出现存在负环或者终点根本不可达的情况,在求解差分约束问题时同样存在
如果路径中出现负环,就表示最短路可以无限小,即不存在最短路,那么在不等式上的表现即X[n-1] - X[0] <= T中的T无限小,得出的结论就是 X[n-1] - X[0]的最大值不存在。在SPFA实现过程中体现为某一点的入队次数大于节点数。(貌似可以用sqrt(num_node)来代替减少运行时间)
这种情况表明X[n-1]和X[0]之间没有约束关系,X[n-1] - X[0]的最大值无限大,即X[n-1]和X[0]的取值有无限多种。在代码实现过程中体现为dis[n-1]=INF。
做题时可能会遇到不等式中的符号不相同的情况,但我们可以对它们进行适当的转化
(1)方程给出:X[n-1]-X[0]>=T ,可以进行移项转化为: X[0]-X[n-1]<=-T。
(2)方程给出:X[n-1]-X[0]
(3)方程给出:X[n-1]-X[0]=T,可以转化为X[n-1]-X[0]<=T&&X[n-1]-X[0]>=T,再利用(1)进行转化即可
对于不同的题目,给出的条件都不一样,我们首先需要关注问题是什么,如果需要求的是两个变量差的最大值,那么需要将所有不等式转变成"<="的形式,建图后求最短路;相反,如果需要求的是两个变量差的最小值,那么需要将所有不等式转化成">=",建图后求最长路。