【POJ1734】Sightseeing Trip 无向图最小环

题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径。

题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K 号节点时,\(d[i][j]\) 中记录着经过前 k-1 个点,从 i 到 j 的最短距离。因此,可以依次考虑每一个结构:\(\{d[i][j]+G[i][k]+G[k][j] \}\),这便是一个环形结构,每次更新答案贡献即可。

至于路径输出,\(get\_path(int\ i,int\ j)\) 函数意为获得从节点 i 到节点 j 的中间节点,不包括端点是因为每次递归时会造成重复记录,因此需要手动额外记录端点。

代码如下

#include 
using namespace std;
const int maxn=110;
const int inf=0x3f3f3f3f;

inline int read(){
    int x=0,f=1;char ch;
    do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
    do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
    return f*x;
}

int n,m,ans=inf,G[maxn][maxn],d[maxn][maxn],mid[maxn][maxn];
vector p;

void read_and_parse(){
    n=read(),m=read();
    memset(G,0x3f,sizeof(G));
    for(int i=1;i<=n;i++)G[i][i]=0;
    for(int i=1,x,y,z;i<=m;i++){
        x=read(),y=read(),z=read();
        G[x][y]=G[y][x]=min(G[x][y],z);
    }
    memcpy(d,G,sizeof(G));
}

void get_path(int i,int j){
    if(!mid[i][j])return;
    get_path(i,mid[i][j]);
    p.push_back(mid[i][j]);
    get_path(mid[i][j],j);
}

void solve(){
    for(int k=1;k<=n;k++){
        for(int i=1;id[i][k]+d[k][j]){
                d[i][j]=d[i][k]+d[k][j];
                mid[i][j]=k;
            }
    }
    if(ans==inf)puts("No solution.");
    else for(int i=0;i

转载于:https://www.cnblogs.com/wzj-xhjbk/p/9976849.html

你可能感兴趣的:(【POJ1734】Sightseeing Trip 无向图最小环)