最小生成树prim&kruskal

prim&kruskai复杂度均为ElogE,

代码中的n是边的数量

prim 推优化
与最短路的dij类似3

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-05-18 12:13:37
 * @LastEditors: Kadia
 * @connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-06-24 23:52:32
 */
#include 

using namespace std;
#define inf 0x3f3f3f3f
struct _edge
{
    int from;
    int to;
    int cost;
};
int vis[50];
int len[50];
int main()
{
    int n;
    vector<_edge>save[50];
    cin >> n;
    int x,y,c;
    for(int i=1;i<=n;i++)
    {
        cin >> x >> y >> c;
        save[x].push_back({x,y,c});
        save[y].push_back({y,x,c});
    }
    for(int i=1;i<=50;i++)
        len[i]=inf;
    priority_queue<pair<int,int>,vector<pair<int,int> > ,greater<pair<int,int> > >que;
    len[1]=0;
    que.push({0,1});
    int sum=0;
    while(que.size())
    {
        int v=que.top().first;
        int num=que.top().second;
        que.pop();
        if(vis[num])
            continue;
        vis[num]++;
        sum+=v;
        for(int i=0;i<save[num].size();i++)
        {
            _edge e=save[num][i];
            if(len[e.to]>e.cost)
            {
                len[e.to]=e.cost;
                que.push({len[e.to],e.to});
            }
        }
    }
    cout << sum << endl ;
    return 0;
}

kruskai

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-06-25 00:56:12
 * @LastEditors: Kadia
 * @Connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-06-25 23:57:13
 */ 
#include 

using namespace std;
struct _edge
{
    int from;
    int to;
    int cost;
}e[200005];
bool cmp1(_edge a,_edge b)
{
    return a.cost < b.cost;
}
int pre[5005];
int findroot(int x)
{
    if(pre[x]==x)
        return x;
    else
        return pre[x]=findroot(pre[x]);
}
void mix(int x,int y)
{
    pre[findroot(y)]=findroot(x);
}
int same(int x,int y)
{
    return findroot(x)==findroot(y);
}
int main()
{
    int n,m;
    cin >> n >> m ;
    int f,t,c;
    for(int i=1;i<=m;i++)
        cin >> e[i].from >> e[i].to >> e[i].cost;
    sort(e+1,e+1+m,cmp1);
    for(int i=1;i<=n;i++)
        pre[i]=i;
    int sum=0;
    int cnt=n;
    for(int i=1;i<=m;i++)
    {
        if(same(e[i].from,e[i].to))
            continue;
        sum+=e[i].cost;
        cnt--;
        mix(e[i].from,e[i].to);
    }
    if(cnt>1)
        cout << "orz" << endl ;
    else
        cout << sum << endl ;
    return 0;
}

你可能感兴趣的:(图)