dijkstra算法与prim算法的区别

1.先说说prim算法的思想:

众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是:

第1步:所有的点都在集合B中,A集合为空。

第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点中路径最短的点,如后把这个点也加入集合A中,从集合B中减去这个点(代码实现同上)。

第3步:集合A中已经有了多个点,这时两个集合A和B,只要找到A集合中的点到B集合中的点的最短边,可以是A集合中的与B集合中的点的任意组合,把这条最短边有两个顶点,把在集合B中的顶点加入到集合A中,(代码实现的时候有点技巧,不需要枚举所有情况,也就是更新操作)。

第4步:重复上述过程。一直到所有的点都在A集合中结束。

2.说说dijkstra算法的过程:

这个算法的过程有比prim算法的过程稍微多一点点步骤,但是思想确实巧妙的,也是贪心原理,它的目的是求某个源点到目的点的最短距离,总的来说,dijkstra算法也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短距离,次短距离,第三短距离等等(这些距离都是源点到某个点的最短距离)。。。。。求出来的每个距离都对应着一个点,也就是到这个点的最短距离,求的也就是原点到所有点的最短距离,并且存在了一个二维数组中,最后给出目的点就能直接通过查表获得最短距离。

第1步:以源点(假设是s1)为开始点,求最短距离,如何求呢? 与这个源点相邻的点与源点的距离全部放在一个数组dist[]中,如果不可达,dist[]中为最大值,这里说一下,为什么要是一维数组,原因是默认的是从源点到这个一维数组下标的值,只需要目的点作为下标就可以,这时从源点到其他点的最短的“一”条路径有了,只要选出dist[]中最小的就行(得到最短路径的另一个端点假设是s2)。

第2步:这时要寻找源点(假设是s1)到另外点的次短距离,这个距离或者是dist[]里面的值,或者是从第1步中选择的那个最短距离 + 从找到点(假设是s2)出发到其他点的距离(其实这里也是一个更新操作,更新的是dist[]里面的值),如果最短距离 + 从这点(假设是s2)到其他点的距离,小于dist[]里面的值,就可以更新dist[]数组了,然后再从dist[]数组中选一个值最小的,也就是第“二”短路径(次短路径)。

第3步:寻找第“三”短路径,这时同上,第二短路径的端点(s3)更新与之相邻其他的点的dist[]数组里面的值。

第4步:重复上述过程n - 1次(n指的是节点个数),得出结果,其实把源点到所有点的最短路径求出来了,都填在了dist[]表中,要找源点到哪个点的最短路,就只需要查表了。

参考代码:http://hi.baidu.com/zp9450/blog/item/37ae08fa4e0a752b4f4aea18.html

转载于:https://www.cnblogs.com/growup/archive/2010/11/13/1971536.html

你可能感兴趣的:(dijkstra算法与prim算法的区别)