1 防止虚假唤醒

使用条件变量pthread_cond_wait()函数的时候一定要先获得与该条件变量相关的mutex。且条件变量为了防止虚假唤醒,一定要在一个循环while()而非if()里面调用pthread_cond_wait()函数:

wait端:
Waiting until x is greater than y is performed as follows:

              pthread_mutex_lock(&mut);
              while (x <= y) {
                      pthread_cond_wait(&cond, &mut);
              }
              /* operate on x and y */
              pthread_mutex_unlock(&mut);

client端:
Modifications on x and y that may cause x to become greater than y should signal the condition if needed:

              pthread_mutex_lock(&mut);
              /* modify x and y */
              if (x > y) 
                  //pthread_cond_broadcast(&cond);
                  pthread_cond_signal(&cond);  
              pthread_mutex_unlock(&mut);

1.1  什么是虚假唤醒?

举个例子,我们现在有一个生产者-消费者队列和三个线程。

1) 1号线程从队列中获取了一个元素,此时队列变为空。

2) 2号线程也想从队列中获取一个元素,但此时队列为空,2号线程便只能进入阻塞(cond.wait()),等待队列非空。

3) 这时,3号线程将一个元素入队,并调用cond.notify()唤醒条件变量。

4) 处于等待状态的2号线程接收到3号线程的唤醒信号,便准备解除阻塞状态,执行接下来的任务(获取队列中的元素)。

5) 然而可能出现这样的情况:当2号线程准备获得队列的锁,去获取队列中的元素时,此时1号线程刚好执行完之前的元素操作,返回再去请求队列中的元素,1号线程便获得队列的锁,检查到队列非空,就获取到了3号线程刚刚入队的元素,然后释放队列锁。

6) 等到2号线程获得队列锁,判断发现队列仍为空,1号线程“偷走了”这个元素,所以对于2号线程而言,这次唤醒就是“虚假”的,它需要再次等待队列非空。

1.2  使用while()判断而非if()的原因

单核下,使用broadcast()会导致惊群效应进而导致虚假唤醒,但使用notify()显然不会出现虚假唤醒(只会唤醒某一个线程)。但在多核处理器下,pthread_cond_signal可能会激活多于一个阻塞在条件变量上的线程(多核情况下:当notify时有多个线程同时被唤醒)。结果就是,当一个线程调用pthread_cond_signal()后,多个调用pthread_cond_wait()或pthread_cond_timedwait()的线程返回。这种效应就称为“惊群效应”。如果用if判断,多个等待线程在满足if条件时都会被唤醒(虚假的),但实际上条件并不满足,生产者生产出来的消费品已经被第一个线程消费了,导致“虚假唤醒”。因此需要使用while以对条件进行再判断以避免虚假唤醒。

这就是我们使用while去做判断而不是使用if的原因:因为等待在条件变量上的线程被唤醒有可能不是因为条件满足而是由于虚假唤醒。所以,我们需要对条件变量的状态进行不断检查直到其满足条件,不仅要在pthread_cond_wait前检查条件是否成立,在pthread_cond_wait之后也要检查。

1.3  具体分析

在第一个线程执行到pthread_cond_wait(&cond,&mut)时,此时如果X<=Y,则此函数就将mut互斥量解锁 ,再将cond条件变量加锁 (pthread_cond_wait()如果阻塞的话,它解锁相关mutex和阻塞当前线程这两个动作加在一起是原子的。),此时第一个线程挂起 (不占用任何CPU周期,理解挂起的概念)。

而在第二个线程中,本来因为mut被第一个线程锁住而阻塞,此时因为mut已经释放,所以可以获得锁mut,并且进行修改X和Y的值,在修改之后,一个IF语句判定是不是X>Y,如果是,则此时pthread_cond_signal()函数会唤醒第一个线程 ,并在下一句中释放互斥量mut。然后第一个线程开始从pthread_cond_wait()执行,首先要再次锁mut , 如果锁成功,再进行条件的判断 (至于为什么用WHILE,即在被唤醒之后还要再判断,后边讨论),如果满足条件,则被唤醒 进行处理,最后释放互斥量mut 。

防止虚假唤醒:

1,pthread_cond_signal在多核处理器上可能同时唤醒多个线程,当你只能让一个线程处理某个任务时,其它被唤醒的线程就需要继续 wait,while循环的意义就体现在这里了,而且规范要求pthread_cond_signal至少唤醒一个pthread_cond_wait上 的线程,其实有些实现为了简单在单处理器上也会唤醒多个线程. 
2,某些应用,如线程池,pthread_cond_broadcast唤醒全部线程,但我们通常只需要一部分线程去做执行任务,所以其它的线程需要继续wait.所以强烈推荐此处使用while循环.

      其实说白了很简单,就是pthread_cond_signal()也可能唤醒多个线程,而如果你同时只允许一个线程访问的话,就必须要使用while来进行条件判断,以保证临界区内只有一个线程在处理。

pthread_cond_wait()  用于阻塞当前线程,等待别的线程使用 pthread_cond_signal() 或pthread_cond_broadcast来唤醒它 。pthread_cond_wait() 必须与pthread_mutex 配套使用。pthread_cond_wait() 函数一进入wait状态就会自动release mutex。当其他线程通过 pthread_cond_signal() 或pthread_cond_broadcast ,把该线程唤醒,使 pthread_cond_wait()通过(返回)时,该线程又自动获得该mutex 。

pthread_cond_signal 函数的作用是发送一个信号给另外一个正在处于阻塞等待状态的线程,使其脱离阻塞状态,继续执行.如果没有线程处在阻塞等待状态,pthread_cond_signal也会成功返回。使用pthread_cond_signal一般不会有“惊群现象”产生,他最多只给一个线程发信号。假如有多个线程正在阻塞等待着这个条件变量的话,那么是根据各等待线程优先级的高低确定哪个线程接收到信号开始继续执行。如果各线程优先级相同,则根据等待时间的长短来确定哪个线程获得信号。但无论如何一个pthread_cond_signal调用最多发信一次。但是 pthread_cond_signal 在多处理器上可能同时唤醒多个线程,当你只能让一个线程处理某个任务时,其它被唤醒的线程就需要继续 wait。


参考资料

条件变量的虚假唤醒(spurious wakeups)问题

深入理解pthread_cond_wait、ptread_cond_signal

 

你可能感兴趣的:(linux网络编程)