数据科学和人工智能技术笔记 十九、数据整理(上)

十九、数据整理(上)

作者:Chris Albon

译者:飞龙

协议:CC BY-NC-SA 4.0

在 Pandas 中通过分组应用函数

import pandas as pd

# 创建示例数据帧
data = {'Platoon': ['A','A','A','A','A','A','B','B','B','B','B','C','C','C','C','C'],
       'Casualties': [1,4,5,7,5,5,6,1,4,5,6,7,4,6,4,6]}
df = pd.DataFrame(data)
df
Casualties Platoon
0 1 A
1 4 A
2 5 A
3 7 A
4 5 A
5 5 A
6 6 B
7 1 B
8 4 B
9 5 B
10 6 B
11 7 C
12 4 C
13 6 C
14 4 C
15 6 C
# 按照 df.platoon 对 df 分组
# 然后将滚动平均 lambda 函数应用于 df.casualties
df.groupby('Platoon')['Casualties'].apply(lambda x:x.rolling(center=False,window=2).mean())

'''
0     NaN
1     2.5
2     4.5
3     6.0
4     6.0
5     5.0
6     NaN
7     3.5
8     2.5
9     4.5
10    5.5
11    NaN
12    5.5
13    5.0
14    5.0
15    5.0
dtype: float64
''' 

在 Pandas 中向分组应用操作

# 导入模块
import pandas as pd

# 创建数据帧
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore'])
df
regiment company name preTestScore postTestScore
0 Nighthawks 1st Miller 4 25
1 Nighthawks 1st Jacobson 24 94
2 Nighthawks 2nd Ali 31 57
3 Nighthawks 2nd Milner 2 62
4 Dragoons 1st Cooze 3 70
5 Dragoons 1st Jacon 4 25
6 Dragoons 2nd Ryaner 24 94
7 Dragoons 2nd Sone 31 57
8 Scouts 1st Sloan 2 62
9 Scouts 1st Piger 3 70
10 Scouts 2nd Riani 2 62
11 Scouts 2nd Ali 3 70
# 创建一个 groupby 变量,按团队(regiment)对 preTestScores 分组
groupby_regiment = df['preTestScore'].groupby(df['regiment'])
groupby_regiment

#  

“这个分组变量现在是GroupBy对象。 除了分组的键df ['key1']的一些中间数据之外,它实际上还没有计算任何东西。 我们的想法是,该对象具有将所有操作应用于每个分组所需的所有信息。” – PyDA

使用list()显示分组的样子。

list(df['preTestScore'].groupby(df['regiment']))

'''
[('Dragoons', 4     3
  5     4
  6    24
  7    31
  Name: preTestScore, dtype: int64), ('Nighthawks', 0     4
  1    24
  2    31
  3     2
  Name: preTestScore, dtype: int64), ('Scouts', 8     2
  9     3
  10    2
  11    3
  Name: preTestScore, dtype: int64)] 
'''

df['preTestScore'].groupby(df['regiment']).describe()
count mean std min 25% 50% 75% max
regiment
Dragoons 4.0 15.50 14.153916 3.0 3.75 14.0 25.75 31.0
Nighthawks 4.0 15.25 14.453950 2.0 3.50 14.0 25.75 31.0
Scouts 4.0 2.50 0.577350 2.0 2.00 2.5 3.00 3.0
# 每个团队的 preTestScore 均值
groupby_regiment.mean()

'''
regiment
Dragoons      15.50
Nighthawks    15.25
Scouts         2.50
Name: preTestScore, dtype: float64 
'''

df['preTestScore'].groupby([df['regiment'], df['company']]).mean()

'''
regiment    company
Dragoons    1st         3.5
            2nd        27.5
Nighthawks  1st        14.0
            2nd        16.5
Scouts      1st         2.5
            2nd         2.5
Name: preTestScore, dtype: float64 
'''

df['preTestScore'].groupby([df['regiment'], df['company']]).mean().unstack()
company 1st 2nd
regiment
Dragoons 3.5 27.5
Nighthawks 14.0 16.5
Scouts 2.5 2.5
# 按团队和公司(company)对整个数据帧分组
df.groupby(['regiment', 'company']).mean()
preTestScore postTestScore
regiment company
Dragoons 1st 3.5 47.5
2nd 27.5 75.5
Nighthawks 1st 14.0 59.5
2nd 16.5 59.5
Scouts 1st 2.5 66.0
2nd 2.5 66.0
# 每个团队和公司的观测数量
df.groupby(['regiment', 'company']).size()

'''
regiment    company
Dragoons    1st        2
            2nd        2
Nighthawks  1st        2
            2nd        2
Scouts      1st        2
            2nd        2
dtype: int64 
'''

# 按团队对数据帧分组,对于每个团队,
for name, group in df.groupby('regiment'): 
    # 打印团队名称
    print(name)
    # 打印它的数据
    print(group)


'''
Dragoons
   regiment company    name  preTestScore  postTestScore
4  Dragoons     1st   Cooze             3             70
5  Dragoons     1st   Jacon             4             25
6  Dragoons     2nd  Ryaner            24             94
7  Dragoons     2nd    Sone            31             57
Nighthawks
     regiment company      name  preTestScore  postTestScore
0  Nighthawks     1st    Miller             4             25
1  Nighthawks     1st  Jacobson            24             94
2  Nighthawks     2nd       Ali            31             57
3  Nighthawks     2nd    Milner             2             62
Scouts
   regiment company   name  preTestScore  postTestScore
8    Scouts     1st  Sloan             2             62
9    Scouts     1st  Piger             3             70
10   Scouts     2nd  Riani             2             62
11   Scouts     2nd    Ali             3             70 
'''

按列分组:

特别是在这种情况下:按列对数据类型(即axis = 1)分组,然后使用list()查看该分组的外观。

list(df.groupby(df.dtypes, axis=1))

'''
[(dtype('int64'),     preTestScore  postTestScore
  0              4             25
  1             24             94
  2             31             57
  3              2             62
  4              3             70
  5              4             25
  6             24             94
  7             31             57
  8              2             62
  9              3             70
  10             2             62
  11             3             70),
 (dtype('O'),       regiment company      name
  0   Nighthawks     1st    Miller
  1   Nighthawks     1st  Jacobson
  2   Nighthawks     2nd       Ali
  3   Nighthawks     2nd    Milner
  4     Dragoons     1st     Cooze
  5     Dragoons     1st     Jacon
  6     Dragoons     2nd    Ryaner
  7     Dragoons     2nd      Sone
  8       Scouts     1st     Sloan
  9       Scouts     1st     Piger
  10      Scouts     2nd     Riani
  11      Scouts     2nd       Ali)] 

df.groupby('regiment').mean().add_prefix('mean_')
mean_preTestScore mean_postTestScore
regiment
Dragoons 15.50 61.5
Nighthawks 15.25 59.5
Scouts 2.50 66.0
# 创建获取分组状态的函数
def get_stats(group):
    return {'min': group.min(), 'max': group.max(), 'count': group.count(), 'mean': group.mean()}

bins = [0, 25, 50, 75, 100]
group_names = ['Low', 'Okay', 'Good', 'Great']
df['categories'] = pd.cut(df['postTestScore'], bins, labels=group_names)

df['postTestScore'].groupby(df['categories']).apply(get_stats).unstack()
count max mean min
categories
Good 8.0 70.0 63.75 57.0
Great 2.0 94.0 94.00 94.0
Low 2.0 25.0 25.00 25.0
Okay 0.0 NaN NaN NaN

在 Pandas 数据帧上应用操作

# 导入模型
import pandas as pd
import numpy as np

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'year': [2012, 2012, 2013, 2014, 2014], 
        'reports': [4, 24, 31, 2, 3],
        'coverage': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'])
df
coverage name reports year
Cochice 25 Jason 4 2012
Pima 94 Molly 24 2012
Santa Cruz 57 Tina 31 2013
Maricopa 62 Jake 2 2014
Yuma 70 Amy 3 2014
# 创建大写转换的 lambda 函数
capitalizer = lambda x: x.upper()

capitalizer函数应用于name列。

apply()可以沿数据帧的任意轴应用函数。

df['name'].apply(capitalizer)

'''
Cochice       JASON
Pima          MOLLY
Santa Cruz     TINA
Maricopa       JAKE
Yuma            AMY
Name: name, dtype: object 
'''

capitalizer lambda 函数映射到序列name中的每个元素。

map()对序列的每个元素应用操作。

df['name'].map(capitalizer)

'''
Cochice       JASON
Pima          MOLLY
Santa Cruz     TINA
Maricopa       JAKE
Yuma            AMY
Name: name, dtype: object 
'''

将平方根函数应用于整个数据帧中的每个单元格。

applymap()将函数应用于整个数据帧中的每个元素。

# 删除字符串变量,以便 applymap() 可以运行
df = df.drop('name', axis=1)

# 返回数据帧每个单元格的平方根
df.applymap(np.sqrt)
coverage reports year
Cochice 5.000000 2.000000 44.855323
Pima 9.695360 4.898979 44.855323
Santa Cruz 7.549834 5.567764 44.866469
Maricopa 7.874008 1.414214 44.877611
Yuma 8.366600 1.732051 44.877611

在数据帧上应用函数。

# 创建叫做 times100 的函数
def times100(x):
    # 如果 x 是字符串,
    if type(x) is str:
        # 原样返回它
        return x
    # 如果不是,返回它乘上 100
    elif x:
        return 100 * x
    # 并留下其它东西
    else:
        return

df.applymap(times100)
coverage reports year
Cochice 2500 400 201200
Pima 9400 2400 201200
Santa Cruz 5700 3100 201300
Maricopa 6200 200 201400
Yuma 7000 300 201400

向 Pandas 数据帧赋予新列

import pandas as pd

# 创建空数据帧
df = pd.DataFrame()

# 创建一列
df['name'] = ['John', 'Steve', 'Sarah']

# 查看数据帧
df
name
0 John
1 Steve
2 Sarah
# 将一个新列赋予名为 age 的 df,它包含年龄列表
df.assign(age = [31, 32, 19])
name age
0 John 31
1 Steve 32
2 Sarah 19

将列表拆分为大小为 N 的分块

在这个片段中,我们接受一个列表并将其分解为大小为 n 的块。 在处理具有最大请求大小的 API 时,这是一种非常常见的做法。

这个漂亮的函数由 Ned Batchelder 贡献,发布于 StackOverflow。

# 创建名称列表
first_names = ['Steve', 'Jane', 'Sara', 'Mary','Jack','Bob', 'Bily', 'Boni', 'Chris','Sori', 'Will', 'Won','Li']

# 创建叫做 chunks 的函数,有两个参数 l 和 n
def chunks(l, n):
    # 对于长度为 l 的范围中的项目 i
    for i in range(0, len(l), n):
        # 创建索引范围
        yield l[i:i+n]

# 从函数 chunks 的结果创建一个列表
list(chunks(first_names, 5))

'''
[['Steve', 'Jane', 'Sara', 'Mary', 'Jack'],
 ['Bob', 'Bily', 'Boni', 'Chris', 'Sori'],
 ['Will', 'Won', 'Li']] 
'''

在 Pandas 中使用正则表达式将字符串分解为列

# 导入模块
import re
import pandas as pd

# 创建带有一列字符串的数据帧
data = {'raw': ['Arizona 1 2014-12-23       3242.0',
                'Iowa 1 2010-02-23       3453.7',
                'Oregon 0 2014-06-20       2123.0',
                'Maryland 0 2014-03-14       1123.6',
                'Florida 1 2013-01-15       2134.0',
                'Georgia 0 2012-07-14       2345.6']}
df = pd.DataFrame(data, columns = ['raw'])
df
raw
0 Arizona 1 2014-12-23 3242.0
1 Iowa 1 2010-02-23 3453.7
2 Oregon 0 2014-06-20 2123.0
3 Maryland 0 2014-03-14 1123.6
4 Florida 1 2013-01-15 2134.0
5 Georgia 0 2012-07-14 2345.6
# df['raw'] 的哪些行包含 'xxxx-xx-xx'?
df['raw'].str.contains('....-..-..', regex=True)

'''
0    True
1    True
2    True
3    True
4    True
5    True
Name: raw, dtype: bool 
'''

# 在 raw 列中,提取字符串中的单个数字
df['female'] = df['raw'].str.extract('(\d)', expand=True)
df['female']

'''
0    1
1    1
2    0
3    0
4    1
5    0
Name: female, dtype: object 
'''

# 在 raw 列中,提取字符串中的 xxxx-xx-xx
df['date'] = df['raw'].str.extract('(....-..-..)', expand=True)
df['date']

'''
0    2014-12-23
1    2010-02-23
2    2014-06-20
3    2014-03-14
4    2013-01-15
5    2012-07-14
Name: date, dtype: object 
'''

# 在 raw 列中,提取字符串中的 ####.##
df['score'] = df['raw'].str.extract('(\d\d\d\d\.\d)', expand=True)
df['score']

'''
0    3242.0
1    3453.7
2    2123.0
3    1123.6
4    2134.0
5    2345.6
Name: score, dtype: object 
'''

# 在 raw 列中,提取字符串中的单词
df['state'] = df['raw'].str.extract('([A-Z]\w{0,})', expand=True)
df['state']

'''
0     Arizona
1        Iowa
2      Oregon
3    Maryland
4     Florida
5     Georgia
Name: state, dtype: object 
'''

df
raw female date score state
0 Arizona 1 2014-12-23 3242.0 1 2014-12-23 3242.0 Arizona
1 Iowa 1 2010-02-23 3453.7 1 2010-02-23 3453.7 Iowa
2 Oregon 0 2014-06-20 2123.0 0 2014-06-20 2123.0 Oregon
3 Maryland 0 2014-03-14 1123.6 0 2014-03-14 1123.6 Maryland
4 Florida 1 2013-01-15 2134.0 1 2013-01-15 2134.0 Florida
5 Georgia 0 2012-07-14 2345.6 0 2012-07-14 2345.6 Georgia

由两个数据帧贡献列

# 导入库
import pandas as pd

# 创建数据帧
dataframe_one = pd.DataFrame()
dataframe_one['1'] = ['1', '1', '1']
dataframe_one['B'] = ['b', 'b', 'b']

# 创建第二个数据帧
dataframe_two = pd.DataFrame()
dataframe_two['2'] = ['2', '2', '2']
dataframe_two['B'] = ['b', 'b', 'b']

# 将每个数据帧的列转换为集合,
# 然后找到这两个集合的交集。
# 这将是两个数据帧共享的列的集合。
set.intersection(set(dataframe_one), set(dataframe_two))

# {'B'} 

从多个列表构建字典

# 创建官员名称的列表
officer_names = ['Sodoni Dogla', 'Chris Jefferson', 'Jessica Billars', 'Michael Mulligan', 'Steven Johnson']

# 创建官员军队的列表
officer_armies = ['Purple Army', 'Orange Army', 'Green Army', 'Red Army', 'Blue Army']

# 创建字典,它是两个列表的 zip
dict(zip(officer_names, officer_armies))

'''
{'Chris Jefferson': 'Orange Army',
 'Jessica Billars': 'Green Army',
 'Michael Mulligan': 'Red Army',
 'Sodoni Dogla': 'Purple Army',
 'Steven Johnson': 'Blue Army'} 
'''

将 CSV 转换为 Python 代码来重建它

# 导入 pandas 包
import pandas as pd

# 将 csv 文件加载为数据帧
df_original = pd.read_csv('http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv')
df = pd.read_csv('http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv')

# 打印创建数据帧的代码
print('==============================')
print('RUN THE CODE BELOW THIS LINE')
print('==============================')
print('raw_data =', df.to_dict(orient='list'))
print('df = pd.DataFrame(raw_data, columns = ' + str(list(df_original)) + ')')

'''
==============================
RUN THE CODE BELOW THIS LINE
==============================
raw_data = {'Sepal.Length': [5.0999999999999996, 4.9000000000000004, 4.7000000000000002, 4.5999999999999996, 5.0, 5.4000000000000004, 4.5999999999999996, 5.0, 4.4000000000000004, 4.9000000000000004, 5.4000000000000004, 4.7999999999999998, 4.7999999999999998, 4.2999999999999998, 5.7999999999999998, 5.7000000000000002, 5.4000000000000004, 5.0999999999999996, 5.7000000000000002, 5.0999999999999996, 5.4000000000000004, 5.0999999999999996, 4.5999999999999996, 5.0999999999999996, 4.7999999999999998, 5.0, 5.0, 5.2000000000000002, 5.2000000000000002, 4.7000000000000002, 4.7999999999999998, 5.4000000000000004, 5.2000000000000002, 5.5, 4.9000000000000004, 5.0, 5.5, 4.9000000000000004, 4.4000000000000004, 5.0999999999999996, 5.0, 4.5, 4.4000000000000004, 5.0, 5.0999999999999996, 4.7999999999999998, 5.0999999999999996, 4.5999999999999996, 5.2999999999999998, 5.0, 7.0, 6.4000000000000004, 6.9000000000000004, 5.5, 6.5, 5.7000000000000002, 6.2999999999999998, 4.9000000000000004, 6.5999999999999996, 5.2000000000000002, 5.0, 5.9000000000000004, 6.0, 6.0999999999999996, 5.5999999999999996, 6.7000000000000002, 5.5999999999999996, 5.7999999999999998, 6.2000000000000002, 5.5999999999999996, 5.9000000000000004, 6.0999999999999996, 6.2999999999999998, 6.0999999999999996, 6.4000000000000004, 6.5999999999999996, 6.7999999999999998, 6.7000000000000002, 6.0, 5.7000000000000002, 5.5, 5.5, 5.7999999999999998, 6.0, 5.4000000000000004, 6.0, 6.7000000000000002, 6.2999999999999998, 5.5999999999999996, 5.5, 5.5, 6.0999999999999996, 5.7999999999999998, 5.0, 5.5999999999999996, 5.7000000000000002, 5.7000000000000002, 6.2000000000000002, 5.0999999999999996, 5.7000000000000002, 6.2999999999999998, 5.7999999999999998, 7.0999999999999996, 6.2999999999999998, 6.5, 7.5999999999999996, 4.9000000000000004, 7.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.5, 6.4000000000000004, 6.7999999999999998, 5.7000000000000002, 5.7999999999999998, 6.4000000000000004, 6.5, 7.7000000000000002, 7.7000000000000002, 6.0, 6.9000000000000004, 5.5999999999999996, 7.7000000000000002, 6.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.2000000000000002, 6.0999999999999996, 6.4000000000000004, 7.2000000000000002, 7.4000000000000004, 7.9000000000000004, 6.4000000000000004, 6.2999999999999998, 6.0999999999999996, 7.7000000000000002, 6.2999999999999998, 6.4000000000000004, 6.0, 6.9000000000000004, 6.7000000000000002, 6.9000000000000004, 5.7999999999999998, 6.7999999999999998, 6.7000000000000002, 6.7000000000000002, 6.2999999999999998, 6.5, 6.2000000000000002, 5.9000000000000004], 'Petal.Width': [0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.10000000000000001, 0.20000000000000001, 0.40000000000000002, 0.40000000000000002, 0.29999999999999999, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.5, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.59999999999999998, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 1.3999999999999999, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6000000000000001, 1.0, 1.3, 1.3999999999999999, 1.0, 1.5, 1.0, 1.3999999999999999, 1.3, 1.3999999999999999, 1.5, 1.0, 1.5, 1.1000000000000001, 1.8, 1.3, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3999999999999999, 1.7, 1.5, 1.0, 1.1000000000000001, 1.0, 1.2, 1.6000000000000001, 1.5, 1.6000000000000001, 1.5, 1.3, 1.3, 1.3, 1.2, 1.3999999999999999, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1000000000000001, 1.3, 2.5, 1.8999999999999999, 2.1000000000000001, 1.8, 2.2000000000000002, 2.1000000000000001, 1.7, 1.8, 1.8, 2.5, 2.0, 1.8999999999999999, 2.1000000000000001, 2.0, 2.3999999999999999, 2.2999999999999998, 1.8, 2.2000000000000002, 2.2999999999999998, 1.5, 2.2999999999999998, 2.0, 2.0, 1.8, 2.1000000000000001, 1.8, 1.8, 1.8, 2.1000000000000001, 1.6000000000000001, 1.8999999999999999, 2.0, 2.2000000000000002, 1.5, 1.3999999999999999, 2.2999999999999998, 2.3999999999999999, 1.8, 1.8, 2.1000000000000001, 2.3999999999999999, 2.2999999999999998, 1.8999999999999999, 2.2999999999999998, 2.5, 2.2999999999999998, 1.8999999999999999, 2.0, 2.2999999999999998, 1.8], 'Petal.Length': [1.3999999999999999, 1.3999999999999999, 1.3, 1.5, 1.3999999999999999, 1.7, 1.3999999999999999, 1.5, 1.3999999999999999, 1.5, 1.5, 1.6000000000000001, 1.3999999999999999, 1.1000000000000001, 1.2, 1.5, 1.3, 1.3999999999999999, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.8999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.3999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.5, 1.3999999999999999, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6000000000000001, 1.8999999999999999, 1.3999999999999999, 1.6000000000000001, 1.3999999999999999, 1.5, 1.3999999999999999, 4.7000000000000002, 4.5, 4.9000000000000004, 4.0, 4.5999999999999996, 4.5, 4.7000000000000002, 3.2999999999999998, 4.5999999999999996, 3.8999999999999999, 3.5, 4.2000000000000002, 4.0, 4.7000000000000002, 3.6000000000000001, 4.4000000000000004, 4.5, 4.0999999999999996, 4.5, 3.8999999999999999, 4.7999999999999998, 4.0, 4.9000000000000004, 4.7000000000000002, 4.2999999999999998, 4.4000000000000004, 4.7999999999999998, 5.0, 4.5, 3.5, 3.7999999999999998, 3.7000000000000002, 3.8999999999999999, 5.0999999999999996, 4.5, 4.5, 4.7000000000000002, 4.4000000000000004, 4.0999999999999996, 4.0, 4.4000000000000004, 4.5999999999999996, 4.0, 3.2999999999999998, 4.2000000000000002, 4.2000000000000002, 4.2000000000000002, 4.2999999999999998, 3.0, 4.0999999999999996, 6.0, 5.0999999999999996, 5.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.5999999999999996, 4.5, 6.2999999999999998, 5.7999999999999998, 6.0999999999999996, 5.0999999999999996, 5.2999999999999998, 5.5, 5.0, 5.0999999999999996, 5.2999999999999998, 5.5, 6.7000000000000002, 6.9000000000000004, 5.0, 5.7000000000000002, 4.9000000000000004, 6.7000000000000002, 4.9000000000000004, 5.7000000000000002, 6.0, 4.7999999999999998, 4.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.0999999999999996, 6.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.5999999999999996, 6.0999999999999996, 5.5999999999999996, 5.5, 4.7999999999999998, 5.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.0999999999999996, 5.9000000000000004, 5.7000000000000002, 5.2000000000000002, 5.0, 5.2000000000000002, 5.4000000000000004, 5.0999999999999996], 'Species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica'], 'Sepal.Width': [3.5, 3.0, 3.2000000000000002, 3.1000000000000001, 3.6000000000000001, 3.8999999999999999, 3.3999999999999999, 3.3999999999999999, 2.8999999999999999, 3.1000000000000001, 3.7000000000000002, 3.3999999999999999, 3.0, 3.0, 4.0, 4.4000000000000004, 3.8999999999999999, 3.5, 3.7999999999999998, 3.7999999999999998, 3.3999999999999999, 3.7000000000000002, 3.6000000000000001, 3.2999999999999998, 3.3999999999999999, 3.0, 3.3999999999999999, 3.5, 3.3999999999999999, 3.2000000000000002, 3.1000000000000001, 3.3999999999999999, 4.0999999999999996, 4.2000000000000002, 3.1000000000000001, 3.2000000000000002, 3.5, 3.6000000000000001, 3.0, 3.3999999999999999, 3.5, 2.2999999999999998, 3.2000000000000002, 3.5, 3.7999999999999998, 3.0, 3.7999999999999998, 3.2000000000000002, 3.7000000000000002, 3.2999999999999998, 3.2000000000000002, 3.2000000000000002, 3.1000000000000001, 2.2999999999999998, 2.7999999999999998, 2.7999999999999998, 3.2999999999999998, 2.3999999999999999, 2.8999999999999999, 2.7000000000000002, 2.0, 3.0, 2.2000000000000002, 2.8999999999999999, 2.8999999999999999, 3.1000000000000001, 3.0, 2.7000000000000002, 2.2000000000000002, 2.5, 3.2000000000000002, 2.7999999999999998, 2.5, 2.7999999999999998, 2.8999999999999999, 3.0, 2.7999999999999998, 3.0, 2.8999999999999999, 2.6000000000000001, 2.3999999999999999, 2.3999999999999999, 2.7000000000000002, 2.7000000000000002, 3.0, 3.3999999999999999, 3.1000000000000001, 2.2999999999999998, 3.0, 2.5, 2.6000000000000001, 3.0, 2.6000000000000001, 2.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 2.8999999999999999, 2.5, 2.7999999999999998, 3.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 3.0, 3.0, 2.5, 2.8999999999999999, 2.5, 3.6000000000000001, 3.2000000000000002, 2.7000000000000002, 3.0, 2.5, 2.7999999999999998, 3.2000000000000002, 3.0, 3.7999999999999998, 2.6000000000000001, 2.2000000000000002, 3.2000000000000002, 2.7999999999999998, 2.7999999999999998, 2.7000000000000002, 3.2999999999999998, 3.2000000000000002, 2.7999999999999998, 3.0, 2.7999999999999998, 3.0, 2.7999999999999998, 3.7999999999999998, 2.7999999999999998, 2.7999999999999998, 2.6000000000000001, 3.0, 3.3999999999999999, 3.1000000000000001, 3.0, 3.1000000000000001, 3.1000000000000001, 3.1000000000000001, 2.7000000000000002, 3.2000000000000002, 3.2999999999999998, 3.0, 2.5, 3.0, 3.3999999999999999, 3.0], 'Unnamed: 0': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]}
'''

df = pd.DataFrame(raw_data, columns = ['Unnamed: 0', 'Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width', 'Species']) 

# 如果你打算检查结果
# 1\. 输入此单元格中上面单元格生成的代码
raw_data = {'Petal.Width': [0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.10000000000000001, 0.20000000000000001, 0.40000000000000002, 0.40000000000000002, 0.29999999999999999, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.5, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.59999999999999998, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 1.3999999999999999, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6000000000000001, 1.0, 1.3, 1.3999999999999999, 1.0, 1.5, 1.0, 1.3999999999999999, 1.3, 1.3999999999999999, 1.5, 1.0, 1.5, 1.1000000000000001, 1.8, 1.3, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3999999999999999, 1.7, 1.5, 1.0, 1.1000000000000001, 1.0, 1.2, 1.6000000000000001, 1.5, 1.6000000000000001, 1.5, 1.3, 1.3, 1.3, 1.2, 1.3999999999999999, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1000000000000001, 1.3, 2.5, 1.8999999999999999, 2.1000000000000001, 1.8, 2.2000000000000002, 2.1000000000000001, 1.7, 1.8, 1.8, 2.5, 2.0, 1.8999999999999999, 2.1000000000000001, 2.0, 2.3999999999999999, 2.2999999999999998, 1.8, 2.2000000000000002, 2.2999999999999998, 1.5, 2.2999999999999998, 2.0, 2.0, 1.8, 2.1000000000000001, 1.8, 1.8, 1.8, 2.1000000000000001, 1.6000000000000001, 1.8999999999999999, 2.0, 2.2000000000000002, 1.5, 1.3999999999999999, 2.2999999999999998, 2.3999999999999999, 1.8, 1.8, 2.1000000000000001, 2.3999999999999999, 2.2999999999999998, 1.8999999999999999, 2.2999999999999998, 2.5, 2.2999999999999998, 1.8999999999999999, 2.0, 2.2999999999999998, 1.8], 'Sepal.Width': [3.5, 3.0, 3.2000000000000002, 3.1000000000000001, 3.6000000000000001, 3.8999999999999999, 3.3999999999999999, 3.3999999999999999, 2.8999999999999999, 3.1000000000000001, 3.7000000000000002, 3.3999999999999999, 3.0, 3.0, 4.0, 4.4000000000000004, 3.8999999999999999, 3.5, 3.7999999999999998, 3.7999999999999998, 3.3999999999999999, 3.7000000000000002, 3.6000000000000001, 3.2999999999999998, 3.3999999999999999, 3.0, 3.3999999999999999, 3.5, 3.3999999999999999, 3.2000000000000002, 3.1000000000000001, 3.3999999999999999, 4.0999999999999996, 4.2000000000000002, 3.1000000000000001, 3.2000000000000002, 3.5, 3.6000000000000001, 3.0, 3.3999999999999999, 3.5, 2.2999999999999998, 3.2000000000000002, 3.5, 3.7999999999999998, 3.0, 3.7999999999999998, 3.2000000000000002, 3.7000000000000002, 3.2999999999999998, 3.2000000000000002, 3.2000000000000002, 3.1000000000000001, 2.2999999999999998, 2.7999999999999998, 2.7999999999999998, 3.2999999999999998, 2.3999999999999999, 2.8999999999999999, 2.7000000000000002, 2.0, 3.0, 2.2000000000000002, 2.8999999999999999, 2.8999999999999999, 3.1000000000000001, 3.0, 2.7000000000000002, 2.2000000000000002, 2.5, 3.2000000000000002, 2.7999999999999998, 2.5, 2.7999999999999998, 2.8999999999999999, 3.0, 2.7999999999999998, 3.0, 2.8999999999999999, 2.6000000000000001, 2.3999999999999999, 2.3999999999999999, 2.7000000000000002, 2.7000000000000002, 3.0, 3.3999999999999999, 3.1000000000000001, 2.2999999999999998, 3.0, 2.5, 2.6000000000000001, 3.0, 2.6000000000000001, 2.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 2.8999999999999999, 2.5, 2.7999999999999998, 3.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 3.0, 3.0, 2.5, 2.8999999999999999, 2.5, 3.6000000000000001, 3.2000000000000002, 2.7000000000000002, 3.0, 2.5, 2.7999999999999998, 3.2000000000000002, 3.0, 3.7999999999999998, 2.6000000000000001, 2.2000000000000002, 3.2000000000000002, 2.7999999999999998, 2.7999999999999998, 2.7000000000000002, 3.2999999999999998, 3.2000000000000002, 2.7999999999999998, 3.0, 2.7999999999999998, 3.0, 2.7999999999999998, 3.7999999999999998, 2.7999999999999998, 2.7999999999999998, 2.6000000000000001, 3.0, 3.3999999999999999, 3.1000000000000001, 3.0, 3.1000000000000001, 3.1000000000000001, 3.1000000000000001, 2.7000000000000002, 3.2000000000000002, 3.2999999999999998, 3.0, 2.5, 3.0, 3.3999999999999999, 3.0], 'Species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica'], 'Unnamed: 0': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150], 'Sepal.Length': [5.0999999999999996, 4.9000000000000004, 4.7000000000000002, 4.5999999999999996, 5.0, 5.4000000000000004, 4.5999999999999996, 5.0, 4.4000000000000004, 4.9000000000000004, 5.4000000000000004, 4.7999999999999998, 4.7999999999999998, 4.2999999999999998, 5.7999999999999998, 5.7000000000000002, 5.4000000000000004, 5.0999999999999996, 5.7000000000000002, 5.0999999999999996, 5.4000000000000004, 5.0999999999999996, 4.5999999999999996, 5.0999999999999996, 4.7999999999999998, 5.0, 5.0, 5.2000000000000002, 5.2000000000000002, 4.7000000000000002, 4.7999999999999998, 5.4000000000000004, 5.2000000000000002, 5.5, 4.9000000000000004, 5.0, 5.5, 4.9000000000000004, 4.4000000000000004, 5.0999999999999996, 5.0, 4.5, 4.4000000000000004, 5.0, 5.0999999999999996, 4.7999999999999998, 5.0999999999999996, 4.5999999999999996, 5.2999999999999998, 5.0, 7.0, 6.4000000000000004, 6.9000000000000004, 5.5, 6.5, 5.7000000000000002, 6.2999999999999998, 4.9000000000000004, 6.5999999999999996, 5.2000000000000002, 5.0, 5.9000000000000004, 6.0, 6.0999999999999996, 5.5999999999999996, 6.7000000000000002, 5.5999999999999996, 5.7999999999999998, 6.2000000000000002, 5.5999999999999996, 5.9000000000000004, 6.0999999999999996, 6.2999999999999998, 6.0999999999999996, 6.4000000000000004, 6.5999999999999996, 6.7999999999999998, 6.7000000000000002, 6.0, 5.7000000000000002, 5.5, 5.5, 5.7999999999999998, 6.0, 5.4000000000000004, 6.0, 6.7000000000000002, 6.2999999999999998, 5.5999999999999996, 5.5, 5.5, 6.0999999999999996, 5.7999999999999998, 5.0, 5.5999999999999996, 5.7000000000000002, 5.7000000000000002, 6.2000000000000002, 5.0999999999999996, 5.7000000000000002, 6.2999999999999998, 5.7999999999999998, 7.0999999999999996, 6.2999999999999998, 6.5, 7.5999999999999996, 4.9000000000000004, 7.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.5, 6.4000000000000004, 6.7999999999999998, 5.7000000000000002, 5.7999999999999998, 6.4000000000000004, 6.5, 7.7000000000000002, 7.7000000000000002, 6.0, 6.9000000000000004, 5.5999999999999996, 7.7000000000000002, 6.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.2000000000000002, 6.0999999999999996, 6.4000000000000004, 7.2000000000000002, 7.4000000000000004, 7.9000000000000004, 6.4000000000000004, 6.2999999999999998, 6.0999999999999996, 7.7000000000000002, 6.2999999999999998, 6.4000000000000004, 6.0, 6.9000000000000004, 6.7000000000000002, 6.9000000000000004, 5.7999999999999998, 6.7999999999999998, 6.7000000000000002, 6.7000000000000002, 6.2999999999999998, 6.5, 6.2000000000000002, 5.9000000000000004], 'Petal.Length': [1.3999999999999999, 1.3999999999999999, 1.3, 1.5, 1.3999999999999999, 1.7, 1.3999999999999999, 1.5, 1.3999999999999999, 1.5, 1.5, 1.6000000000000001, 1.3999999999999999, 1.1000000000000001, 1.2, 1.5, 1.3, 1.3999999999999999, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.8999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.3999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.5, 1.3999999999999999, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6000000000000001, 1.8999999999999999, 1.3999999999999999, 1.6000000000000001, 1.3999999999999999, 1.5, 1.3999999999999999, 4.7000000000000002, 4.5, 4.9000000000000004, 4.0, 4.5999999999999996, 4.5, 4.7000000000000002, 3.2999999999999998, 4.5999999999999996, 3.8999999999999999, 3.5, 4.2000000000000002, 4.0, 4.7000000000000002, 3.6000000000000001, 4.4000000000000004, 4.5, 4.0999999999999996, 4.5, 3.8999999999999999, 4.7999999999999998, 4.0, 4.9000000000000004, 4.7000000000000002, 4.2999999999999998, 4.4000000000000004, 4.7999999999999998, 5.0, 4.5, 3.5, 3.7999999999999998, 3.7000000000000002, 3.8999999999999999, 5.0999999999999996, 4.5, 4.5, 4.7000000000000002, 4.4000000000000004, 4.0999999999999996, 4.0, 4.4000000000000004, 4.5999999999999996, 4.0, 3.2999999999999998, 4.2000000000000002, 4.2000000000000002, 4.2000000000000002, 4.2999999999999998, 3.0, 4.0999999999999996, 6.0, 5.0999999999999996, 5.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.5999999999999996, 4.5, 6.2999999999999998, 5.7999999999999998, 6.0999999999999996, 5.0999999999999996, 5.2999999999999998, 5.5, 5.0, 5.0999999999999996, 5.2999999999999998, 5.5, 6.7000000000000002, 6.9000000000000004, 5.0, 5.7000000000000002, 4.9000000000000004, 6.7000000000000002, 4.9000000000000004, 5.7000000000000002, 6.0, 4.7999999999999998, 4.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.0999999999999996, 6.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.5999999999999996, 6.0999999999999996, 5.5999999999999996, 5.5, 4.7999999999999998, 5.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.0999999999999996, 5.9000000000000004, 5.7000000000000002, 5.2000000000000002, 5.0, 5.2000000000000002, 5.4000000000000004, 5.0999999999999996]}
df = pd.DataFrame(raw_data, columns = ['Unnamed: 0', 'Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width', 'Species'])

# 查看原始数据帧的前几行
df.head()
Unnamed: 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
0 1 5.1 3.5 1.4 0.2 setosa
1 2 4.9 3.0 1.4 0.2 setosa
2 3 4.7 3.2 1.3 0.2 setosa
3 4 4.6 3.1 1.5 0.2 setosa
4 5 5.0 3.6 1.4 0.2 setosa
# 查看使用我们的代码创建的,数据帧的前几行
df_original.head()
Unnamed: 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
0 1 5.1 3.5 1.4 0.2 setosa
1 2 4.9 3.0 1.4 0.2 setosa
2 3 4.7 3.2 1.3 0.2 setosa
3 4 4.6 3.1 1.5 0.2 setosa
4 5 5.0 3.6 1.4 0.2 setosa

将分类变量转换为虚拟变量

# 导入模块
import pandas as pd

# 创建数据帧
raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'], 
        'sex': ['male', 'female', 'male', 'female', 'female']}
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'sex'])
df
first_name last_name sex
0 Jason Miller male
1 Molly Jacobson female
2 Tina Ali male
3 Jake Milner female
4 Amy Cooze female
# 从 sex 变量创建一组虚拟变量
df_sex = pd.get_dummies(df['sex'])

# 将虚拟变量连接到主数据帧
df_new = pd.concat([df, df_sex], axis=1)
df_new
first_name last_name sex female male
0 Jason Miller male 0.0 1.0
1 Molly Jacobson female 1.0 0.0
2 Tina Ali male 0.0 1.0
3 Jake Milner female 1.0 0.0
4 Amy Cooze female 1.0 0.0
# 连接新列的替代方案
df_new = df.join(df_sex)
df_new
first_name last_name sex female male
0 Jason Miller male 0.0 1.0
1 Molly Jacobson female 1.0 0.0
2 Tina Ali male 0.0 1.0
3 Jake Milner female 1.0 0.0
4 Amy Cooze female 1.0 0.0

将分类变量转换为虚拟变量

# 导入模块
import pandas as pd
import patsy

# 创建数据帧
raw_data = {'countrycode': [1, 2, 3, 2, 1]} 
df = pd.DataFrame(raw_data, columns = ['countrycode'])
df
countrycode
0 1
1 2
2 3
3 2
4 1
# 将 countrycode 变量转换为三个二元变量
patsy.dmatrix('C(countrycode)-1', df, return_type='dataframe')
C(countrycode)[1] C(countrycode)[2] C(countrycode)[3]
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
3 0.0 1.0 0.0
4 1.0 0.0 0.0

将字符串分类变量转换为数字变量

# 导入模块
import pandas as pd

raw_data = {'patient': [1, 1, 1, 2, 2], 
        'obs': [1, 2, 3, 1, 2], 
        'treatment': [0, 1, 0, 1, 0],
        'score': ['strong', 'weak', 'normal', 'weak', 'strong']} 
df = pd.DataFrame(raw_data, columns = ['patient', 'obs', 'treatment', 'score'])
df
patient obs treatment score
0 1 1 0 strong
1 1 2 1 weak
2 1 3 0 normal
3 2 1 1 weak
4 2 2 0 strong
# 创建一个函数,将 df['score'] 的所有值转换为数字
def score_to_numeric(x):
    if x=='strong':
        return 3
    if x=='normal':
        return 2
    if x=='weak':
        return 1

df['score_num'] = df['score'].apply(score_to_numeric)
df
patient obs treatment score score_num
0 1 1 0 strong 3
1 1 2 1 weak 1
2 1 3 0 normal 2
3 2 1 1 weak 1
4 2 2 0 strong 3

将变量转换为时间序列

# 导入库
import pandas as pd

# 创建索引为一组名称的数据集
raw_data = {'date': ['2014-06-01T01:21:38.004053', '2014-06-02T01:21:38.004053', '2014-06-03T01:21:38.004053'],
        'score': [25, 94, 57]}
df = pd.DataFrame(raw_data, columns = ['date', 'score'])
df
date score
0 2014-06-01T01:21:38.004053 25
1 2014-06-02T01:21:38.004053 94
2 2014-06-03T01:21:38.004053 57
# 转置数据集,使索引(在本例中为名称)为列
df["date"] = pd.to_datetime(df["date"])

df = df.set_index(df["date"])

df
date score
date
2014-06-01 01:21:38.004053 2014-06-01 01:21:38.004053 25
2014-06-02 01:21:38.004053 2014-06-02 01:21:38.004053 94
2014-06-03 01:21:38.004053 2014-06-03 01:21:38.004053 57

在 Pandas 数据帧中计数

# 导入库
import pandas as pd

year = pd.Series([1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 
                  1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894])
guardCorps = pd.Series([0,2,2,1,0,0,1,1,0,3,0,2,1,0,0,1,0,1,0,1])
corps1 = pd.Series([0,0,0,2,0,3,0,2,0,0,0,1,1,1,0,2,0,3,1,0])
corps2 = pd.Series([0,0,0,2,0,2,0,0,1,1,0,0,2,1,1,0,0,2,0,0])
corps3 = pd.Series([0,0,0,1,1,1,2,0,2,0,0,0,1,0,1,2,1,0,0,0])
corps4 = pd.Series([0,1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0])
corps5 = pd.Series([0,0,0,0,2,1,0,0,1,0,0,1,0,1,1,1,1,1,1,0])
corps6 = pd.Series([0,0,1,0,2,0,0,1,2,0,1,1,3,1,1,1,0,3,0,0])
corps7 = pd.Series([1,0,1,0,0,0,1,0,1,1,0,0,2,0,0,2,1,0,2,0])
corps8 = pd.Series([1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,1,0,1])
corps9 = pd.Series([0,0,0,0,0,2,1,1,1,0,2,1,1,0,1,2,0,1,0,0])
corps10 = pd.Series([0,0,1,1,0,1,0,2,0,2,0,0,0,0,2,1,3,0,1,1])
corps11 = pd.Series([0,0,0,0,2,4,0,1,3,0,1,1,1,1,2,1,3,1,3,1])
corps14 = pd.Series([ 1,1,2,1,1,3,0,4,0,1,0,3,2,1,0,2,1,1,0,0])
corps15 = pd.Series([0,1,0,0,0,0,0,1,0,1,1,0,0,0,2,2,0,0,0,0])

variables = dict(guardCorps = guardCorps, corps1 = corps1, 
                 corps2 = corps2, corps3 = corps3, corps4 = corps4, 
                 corps5 = corps5, corps6 = corps6, corps7 = corps7, 
                 corps8 = corps8, corps9 = corps9, corps10 = corps10, 
                 corps11 = corps11 , corps14 = corps14, corps15 = corps15)

horsekick = pd.DataFrame(variables, columns = ['guardCorps', 
                                                    'corps1', 'corps2', 
                                                    'corps3', 'corps4', 
                                                    'corps5', 'corps6', 
                                                    'corps7', 'corps8', 
                                                    'corps9', 'corps10', 
                                                    'corps11', 'corps14', 
                                                    'corps15'])

horsekick.index = [1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 
                  1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894]

horsekick
guardCorps corps1 corps2 corps3 corps4 corps5 corps6 corps7 corps8 corps9 corps10 corps11 corps14 corps15
1875 0 0 0 0 0 0 0 1 1 0 0 0 1 0
1876 2 0 0 0 1 0 0 0 0 0 0 0 1 1
1877 2 0 0 0 0 0 1 1 0 0 1 0 2 0
1878 1 2 2 1 1 0 0 0 0 0 1 0 1 0
1879 0 0 0 1 1 2 2 0 1 0 0 2 1 0
1880 0 3 2 1 1 1 0 0 0 2 1 4 3 0
1881 1 0 0 2 1 0 0 1 0 1 0 0 0 0
1882 1 2 0 0 0 0 1 0 1 1 2 1 4 1
1883 0 0 1 2 0 1 2 1 0 1 0 3 0 0
1884 3 0 1 0 0 0 0 1 0 0 2 0 1 1
1885 0 0 0 0 0 0 1 0 0 2 0 1 0 1
1886 2 1 0 0 1 1 1 0 0 1 0 1 3 0
1887 1 1 2 1 0 0 3 2 1 1 0 1 2 0
1888 0 1 1 0 0 1 1 0 0 0 0 1 1 0
1889 0 0 1 1 0 1 1 0 0 1 2 2 0 2
1890 1 2 0 2 0 1 1 2 0 2 1 1 2 2
1891 0 0 0 1 1 1 0 1 1 0 3 3 1 0
1892 1 3 2 0 1 1 3 0 1 1 0 1 1 0
1893 0 1 0 0 0 1 0 2 0 0 1 3 0 0
1894 1 0 0 0 0 0 0 0 1 0 1 1 0 0
# 计算每个团队中每个死亡人数的次数
result = horsekick.apply(pd.value_counts).fillna(0); result

| | guardCorps | corps1 | corps2 | corps3 | corps4 | corps5 | corps6 | corps7 | corps8 | corps9 | corps10 | corps11 | corps14 | corps15 |
| 0 | 9.0 | 11.0 | 12.0 | 11.0 | 12.0 | 10.0 | 9.0 | 11.0 | 13.0 | 10.0 | 10.0 | 6 | 6 | 14.0 |
| 1 | 7.0 | 4.0 | 4.0 | 6.0 | 8.0 | 9.0 | 7.0 | 6.0 | 7.0 | 7.0 | 6.0 | 8 | 8 | 4.0 |
| 2 | 3.0 | 3.0 | 4.0 | 3.0 | 0.0 | 1.0 | 2.0 | 3.0 | 0.0 | 3.0 | 3.0 | 2 | 3 | 2.0 |
| 3 | 1.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3 | 2 | 0.0 |
| 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 1 | 0.0 |

# 计算每个月死亡总数出现在 guardCorps 的次数
pd.value_counts(horsekick['guardCorps'].values, sort=False)

'''
0    9
1    7
2    3
3    1
dtype: int64 
'''

horsekick['guardCorps'].unique()

# array([0, 2, 1, 3]) 

在 Pandas 中创建流水线

Pandas 的流水线功能允许你将 Python 函数串联在一起,来构建数据处理流水线。

import pandas as pd

# 创建空数据帧
df = pd.DataFrame()

# Create a column
df['name'] = ['John', 'Steve', 'Sarah']
df['gender'] = ['Male', 'Male', 'Female']
df['age'] = [31, 32, 19]

# 查看数据帧
df
name gender age
0 John Male 31
1 Steve Male 32
2 Sarah Female 19
# 创建函数,
def mean_age_by_group(dataframe, col):
    # 它按列分组数据,并返回每组的均值
    return dataframe.groupby(col).mean()

# 创建函数,
def uppercase_column_name(dataframe):
    # 它大写所有列标题
    dataframe.columns = dataframe.columns.str.upper()
    # 并返回它
    return dataframe

# 创建流水线,它应用 mean_age_by_group 函数
(df.pipe(mean_age_by_group, col='gender')
   # 之后应用 uppercase_column_name 函数
   .pipe(uppercase_column_name)
)
AGE
gender
Female 19.0
Male 31.5

使用for循环创建 Pandas 列

import pandas as pd
import numpy as np

raw_data = {'student_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'test_score': [76, 88, 84, 67, 53, 96, 64, 91, 77, 73, 52, np.NaN]}
df = pd.DataFrame(raw_data, columns = ['student_name', 'test_score'])

# 创建列表来储存数据
grades = []

# 对于列中的每一行
for row in df['test_score']:
    # 如果大于某个值
    if row > 95:
        # 添加字母分数
        grades.append('A')
    # 或者,如果大于某个值
    elif row > 90:
        # 添加字母分数
        grades.append('A-')
    # 或者,如果大于某个值
    elif row > 85:
        # 添加字母分数
        grades.append('B')
    # 或者,如果大于某个值
    elif row > 80:
        # 添加字母分数
        grades.append('B-')
    # 或者,如果大于某个值
    elif row > 75:
        # 添加字母分数
        grades.append('C')
    # 或者,如果大于某个值
    elif row > 70:
        # 添加字母分数
        grades.append('C-')
    # 或者,如果大于某个值
    elif row > 65:
        # 添加字母分数
        grades.append('D')
    # 或者,如果大于某个值
    elif row > 60:
        # 添加字母分数
        grades.append('D-')
    # 否则
    else:
        # 添加不及格分数
        grades.append('Failed')

# 从列表创建一列
df['grades'] = grades

# 查看新数据帧
df
student_name test_score grades
0 Miller 76.0 C
1 Jacobson 88.0 B
2 Ali 84.0 B-
3 Milner 67.0 D
4 Cooze 53.0 Failed
5 Jacon 96.0 A
6 Ryaner 64.0 D-
7 Sone 91.0 A-
8 Sloan 77.0 C
9 Piger 73.0 C-
10 Riani 52.0 Failed
11 Ali NaN Failed

创建项目计数

from collections import Counter

# 创建一个今天吃的水果的计数器
fruit_eaten = Counter(['Apple', 'Apple', 'Apple', 'Banana', 'Pear', 'Pineapple'])

# 查看计数器
fruit_eaten

# Counter({'Apple': 3, 'Banana': 1, 'Pear': 1, 'Pineapple': 1}) 

# 更新菠萝的计数(因为你只吃菠萝)
fruit_eaten.update(['Pineapple'])

# 查看计数器
fruit_eaten

# Counter({'Apple': 3, 'Banana': 1, 'Pear': 1, 'Pineapple': 2}) 

# 查看计数最大的三个项目
fruit_eaten.most_common(3)

# [('Apple', 3), ('Pineapple', 2), ('Banana', 1)] 

基于条件创建一列

# 导入所需模块
import pandas as pd
import numpy as np

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'age': [42, 52, 36, 24, 73], 
        'preTestScore': [4, 24, 31, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'])
df
name age preTestScore postTestScore
0 Jason 42 4 25
1 Molly 52 24 94
2 Tina 36 31 57
3 Jake 24 2 62
4 Amy 73 3 70
# 创建一个名为 df.elderly 的新列
# 如果 df.age 大于 50 则值为 yes,否则为 no
df['elderly'] = np.where(df['age']>=50, 'yes', 'no')

# 查看数据帧
df
name age preTestScore postTestScore elderly
0 Jason 42 4 25 no
1 Molly 52 24 94 yes
2 Tina 36 31 57 no
3 Jake 24 2 62 no
4 Amy 73 3 70 yes

从词典键和值创建列表

# 创建字典
dict = {'county': ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'], 
        'year': [2012, 2012, 2013, 2014, 2014], 
        'fireReports': [4, 24, 31, 2, 3]}

# 创建键的列表
list(dict.keys())

# ['fireReports', 'year', 'county'] 

# 创建值的列表
list(dict.values())

'''
[[4, 24, 31, 2, 3],
 [2012, 2012, 2013, 2014, 2014],
 ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']] 
'''

Pandas 中的交叉表

# 导入库
import pandas as pd

raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'company': ['infantry', 'infantry', 'cavalry', 'cavalry', 'infantry', 'infantry', 'cavalry', 'cavalry','infantry', 'infantry', 'cavalry', 'cavalry'], 
        'experience': ['veteran', 'rookie', 'veteran', 'rookie', 'veteran', 'rookie', 'veteran', 'rookie','veteran', 'rookie', 'veteran', 'rookie'],
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'experience', 'name', 'preTestScore', 'postTestScore'])
df
regiment company experience name preTestScore postTestScore
0 Nighthawks infantry veteran Miller 4 25
1 Nighthawks infantry rookie Jacobson 24 94
2 Nighthawks cavalry veteran Ali 31 57
3 Nighthawks cavalry rookie Milner 2 62
4 Dragoons infantry veteran Cooze 3 70
5 Dragoons infantry rookie Jacon 4 25
6 Dragoons cavalry veteran Ryaner 24 94
7 Dragoons cavalry rookie Sone 31 57
8 Scouts infantry veteran Sloan 2 62
9 Scouts infantry rookie Piger 3 70
10 Scouts cavalry veteran Riani 2 62
11 Scouts cavalry rookie Ali 3 70

按公司和团队创建交叉表。按公司和团队计算观测数量。

pd.crosstab(df.regiment, df.company, margins=True)
company cavalry infantry All
regiment
Dragoons 2 2 4
Nighthawks 2 2 4
Scouts 2 2 4
All 6 6 12
# 为每个团队创建公司和经验的交叉表
pd.crosstab([df.company, df.experience], df.regiment,  margins=True)
regiment Dragoons Nighthawks Scouts All
company experience
cavalry rookie 1 1 1 3
veteran 1 1 1 3
infantry rookie 1 1 1 3
veteran 1 1 1 3
All 4 4 4 12

删除重复

# 导入模块
import pandas as pd

raw_data = {'first_name': ['Jason', 'Jason', 'Jason','Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', 'Miller', 'Miller','Ali', 'Milner', 'Cooze'], 
        'age': [42, 42, 1111111, 36, 24, 73], 
        'preTestScore': [4, 4, 4, 31, 2, 3],
        'postTestScore': [25, 25, 25, 57, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore'])
df
first_name last_name age preTestScore postTestScore
0 Jason Miller 42 4 25
1 Jason Miller 42 4 25
2 Jason Miller 1111111 4 25
3 Tina Ali 36 31 57
4 Jake Milner 24 2 62
5 Amy Cooze 73 3 70
# 确定哪些观测是重复的
df.duplicated()

'''
0    False
1     True
2    False
3    False
4    False
5    False
dtype: bool 
'''

df.drop_duplicates()
first_name last_name age preTestScore postTestScore
0 Jason Miller 42 4 25
2 Jason Miller 1111111 4 25
3 Tina Ali 36 31 57
4 Jake Milner 24 2 62
5 Amy Cooze 73 3 70
# 删除 first_name 列中的重复项
# 但保留重复集中的最后一个观测
df.drop_duplicates(['first_name'], keep='last')
first_name last_name age preTestScore postTestScore
2 Jason Miller 1111111 4 25
3 Tina Ali 36 31 57
4 Jake Milner 24 2 62
5 Amy Cooze 73 3 70

Pandas 数据帧的描述性统计

# 导入模块
import pandas as pd

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'age': [42, 52, 36, 24, 73], 
        'preTestScore': [4, 24, 31, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'])
df
name age preTestScore postTestScore
0 Jason 42 4 25
1 Molly 52 24 94
2 Tina 36 31 57
3 Jake 24 2 62
4 Amy 73 3 70

5 rows × 4 columns

# 所有年龄之和
df['age'].sum()

# 227 

df['preTestScore'].mean()

# 12.800000000000001 

df['preTestScore'].cumsum()

'''
0     4
1    28
2    59
3    61
4    64
Name: preTestScore, dtype: int64 
'''

df['preTestScore'].describe()

'''
count     5.000000
mean     12.800000
std      13.663821
min       2.000000
25%       3.000000
50%       4.000000
75%      24.000000
max      31.000000
Name: preTestScore, dtype: float64 
'''

df['preTestScore'].count()

# 5 

df['preTestScore'].min()

# 2 

df['preTestScore'].max()

# 31 

df['preTestScore'].median()

# 4.0 

df['preTestScore'].var()

# 186.69999999999999 

df['preTestScore'].std()

# 13.663820841916802 

df['preTestScore'].skew()

# 0.74334524573267591 

df['preTestScore'].kurt()

# -2.4673543738411525 

df.corr()
age preTestScore postTestScore
age 1.000000 -0.105651 0.328852
preTestScore -0.105651 1.000000 0.378039
postTestScore 0.328852 0.378039 1.000000

3 rows × 3 columns

# 协方差矩阵
df.cov()
age preTestScore postTestScore
age 340.80 -26.65 151.20
preTestScore -26.65 186.70 128.65
postTestScore 151.20 128.65 620.30

3 rows × 3 columns

丢弃行或者列

# 导入模块
import pandas as pd

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'year': [2012, 2012, 2013, 2014, 2014], 
        'reports': [4, 24, 31, 2, 3]}
df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'])
df
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Santa Cruz Tina 31 2013
Maricopa Jake 2 2014
Yuma Amy 3 2014
# 丢弃观测(行)
df.drop(['Cochice', 'Pima'])
name reports year
Santa Cruz Tina 31 2013
Maricopa Jake 2 2014
Yuma Amy 3 2014
# 丢弃变量(列)
# 注意:`axis = 1`表示我们指的是列,而不是行
df.drop('reports', axis=1)
name year
Cochice Jason 2012
Pima Molly 2012
Santa Cruz Tina 2013
Maricopa Jake 2014
Yuma Amy 2014

如果它包含某个值(这里是Tina),丢弃一行。

具体来说:创建一个名为df的新数据框,名称列中的单元格的值不等于Tina

df[df.name != 'Tina']
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Maricopa Jake 2 2014
Yuma Amy 3 2014

按照行号丢弃一行(在本例中为第 3 行)。

请注意,Pandas使用从零开始的编号,因此 0 是第一行,1 是第二行,等等。

df.drop(df.index[2])
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Maricopa Jake 2 2014
Yuma Amy 3 2014

可以扩展到范围。

df.drop(df.index[[2,3]])
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Yuma Amy 3 2014

或相对于 DF 的末尾来丢弃。

df.drop(df.index[-2])
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Santa Cruz Tina 31 2013
Yuma Amy 3 2014

你也可以选择相对于起始或末尾的范围。

df[:3] # 保留前三个
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012
Santa Cruz Tina 31 2013
df[:-3] # 丢掉后三个
name reports year
Cochice Jason 4 2012
Pima Molly 24 2012

枚举列表

# 创建字符串列表
data = ['One','Two','Three','Four','Five']

# 对于 enumerate(data) 中的每个项目
for item in enumerate(data):
    # 打印整个枚举的元素
    print(item)
    # 只打印值(没有索引)
    print(item[1])

'''
(0, 'One')
One
(1, 'Two')
Two
(2, 'Three')
Three
(3, 'Four')
Four
(4, 'Five')
Five 
'''

在 Pandas 中将包含列表的单元扩展为自己的变量

# 导入 pandas
import pandas as pd

# 创建数据集
raw_data = {'score': [1,2,3], 
        'tags': [['apple','pear','guava'],['truck','car','plane'],['cat','dog','mouse']]}
df = pd.DataFrame(raw_data, columns = ['score', 'tags'])

# 查看数据集
df
score tags
0 1 [apple, pear, guava]
1 2 [truck, car, plane]
2 3 [cat, dog, mouse]
# 将 df.tags 扩展为自己的数据帧
tags = df['tags'].apply(pd.Series)

# 将每个变量重命名为标签
tags = tags.rename(columns = lambda x : 'tag_' + str(x))

# 查看 tags 数据帧
tags
tag_0 tag_1 tag_2
0 apple pear guava
1 truck car plane
2 cat dog mouse
# 将 tags 数据帧添加回原始数据帧
pd.concat([df[:], tags[:]], axis=1)
score tags tag_0 tag_1 tag_2
0 1 [apple, pear, guava] apple pear guava
1 2 [truck, car, plane] truck car plane
2 3 [cat, dog, mouse] cat dog mouse

过滤 pandas 数据帧

# 导入模块
import pandas as pd

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'year': [2012, 2012, 2013, 2014, 2014], 
        'reports': [4, 24, 31, 2, 3],
        'coverage': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'])
df
coverage name reports year
Cochice 25 Jason 4 2012
Pima 94 Molly 24 2012
Santa Cruz 57 Tina 31 2013
Maricopa 62 Jake 2 2014
Yuma 70 Amy 3 2014
# 查看列
df['name']

'''
Cochice       Jason
Pima          Molly
Santa Cruz     Tina
Maricopa       Jake
Yuma            Amy
Name: name, dtype: object 
'''

df[['name', 'reports']]
name reports
Cochice Jason 4
Pima Molly 24
Santa Cruz Tina 31
Maricopa Jake 2
Yuma Amy 3
# 查看前两行
df[:2]
coverage name reports year
Cochice 25 Jason 4 2012
Pima 94 Molly 24 2012
# 查看 Coverage 大于 50 的行
df[df['coverage'] > 50]
coverage name reports year
Pima 94 Molly 24 2012
Santa Cruz 57 Tina 31 2013
Maricopa 62 Jake 2 2014
Yuma 70 Amy 3 2014
# 查看 Coverage 大于 50 并且 Reports 小于 4 的行
df[(df['coverage']  > 50) & (df['reports'] < 4)]
coverage name reports year
Maricopa 62 Jake 2 2014
Yuma 70 Amy 3 2014

寻找数据帧的列中的最大值

# 导入模块
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# 创建数据帧
raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'], 
        'age': [42, 52, 36, 24, 73], 
        'preTestScore': [4, 24, 31, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore'])
df
first_name last_name age preTestScore postTestScore
0 Jason Miller 42 4 25
1 Molly Jacobson 52 24 94
2 Tina Ali 36 31 57
3 Jake Milner 24 2 62
4 Amy Cooze 73 3 70
# 获取 preTestScore 列中的最大值的索引
df['preTestScore'].idxmax()

# 2 

寻找数据帧中的唯一值

import pandas as pd
import numpy as np

raw_data = {'regiment': ['51st', '29th', '2nd', '19th', '12th', '101st', '90th', '30th', '193th', '1st', '94th', '91th'], 
            'trucks': ['MAZ-7310', np.nan, 'MAZ-7310', 'MAZ-7310', 'Tatra 810', 'Tatra 810', 'Tatra 810', 'Tatra 810', 'ZIS-150', 'Tatra 810', 'ZIS-150', 'ZIS-150'],
            'tanks': ['Merkava Mark 4', 'Merkava Mark 4', 'Merkava Mark 4', 'Leopard 2A6M', 'Leopard 2A6M', 'Leopard 2A6M', 'Arjun MBT', 'Leopard 2A6M', 'Arjun MBT', 'Arjun MBT', 'Arjun MBT', 'Arjun MBT'],
            'aircraft': ['none', 'none', 'none', 'Harbin Z-9', 'Harbin Z-9', 'none', 'Harbin Z-9', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk']}

df = pd.DataFrame(raw_data, columns = ['regiment', 'trucks', 'tanks', 'aircraft'])

# 查看前几行
df.head()
regiment trucks tanks aircraft
0 51st MAZ-7310 Merkava Mark 4 none
1 29th NaN Merkava Mark 4 none
2 2nd MAZ-7310 Merkava Mark 4 none
3 19th MAZ-7310 Leopard 2A6M Harbin Z-9
4 12th Tatra 810 Leopard 2A6M Harbin Z-9
# 通过将 pandas 列转换为集合
# 创建唯一值的列表
list(set(df.trucks))

# [nan, 'Tatra 810', 'MAZ-7310', 'ZIS-150'] 

# 创建 df.trucks 中的唯一值的列表
list(df['trucks'].unique())

# ['MAZ-7310', nan, 'Tatra 810', 'ZIS-150'] 

地理编码和反向地理编码

在使用地理数据时,地理编码(将物理地址或位置转换为经纬度)和反向地理编码(将经纬度转换为物理地址或位置)是常见任务。

Python 提供了许多软件包,使任务变得异常简单。 在下面的教程中,我使用 pygeocoder(Google 的 geo-API 的包装器)来进行地理编码和反向地理编码。

首先,我们要加载我们想要在脚本中使用的包。 具体来说,我正在为地理函数加载 pygeocoder,为数据帧结构加载 pandas,为缺失值(np.nan)函数加载 numpy。

# 加载包
from pygeocoder import Geocoder
import pandas as pd
import numpy as np

地理数据有多种形式,在这种情况下,我们有一个 Python 字典,包含五个经纬度的字符串,每个坐标在逗号分隔的坐标对中。

# 创建原始数据的字典
data = {'Site 1': '31.336968, -109.560959',
        'Site 2': '31.347745, -108.229963',
        'Site 3': '32.277621, -107.734724',
        'Site 4': '31.655494, -106.420484',
        'Site 5': '30.295053, -104.014528'}

虽然技术上没必要,因为我最初使用 R,我是数据帧的忠实粉丝,所以让我们把模拟的数据字典变成数据帧。

# 将字典转换为 pandas 数据帧
df = pd.DataFrame.from_dict(data, orient='index')

# 查看数据帧
df
0
Site 1 31.336968, -109.560959
Site 2 31.347745, -108.229963
Site 3 32.277621, -107.734724
Site 4 31.655494, -106.420484
Site 5 30.295053, -104.014528

你现在可以看到,我们有了包含五行的数据帧,每行包含一个经纬度字符串。 在我们处理数据之前,我们需要1)将字符串分成纬度和经度,然后将它们转换为浮点数。以下代码就是这样。

# 为循环创建两个列表
lat = []
lon = []

# 对于变量中的每一行
for row in df[0]:
    # 尝试
    try:
        # 用逗号分隔行,转换为浮点
        # 并将逗号前的所有内容追加到 lat
        lat.append(float(row.split(',')[0]))
        # 用逗号分隔行,转换为浮点
        # 并将逗号后的所有内容追加到 lon
        lon.append(float(row.split(',')[1]))
    # 但是如果你得到了错误
    except:
        # 向 lat 添加缺失值
        lat.append(np.NaN)
        # 向 lon 添加缺失值
        lon.append(np.NaN)

# 从 lat 和 lon 创建新的两列
df['latitude'] = lat
df['longitude'] = lon

让我们看看现在有了什么。

# 查看数据帧
df
0 latitude longitude
Site 1 31.336968, -109.560959 31.336968 -109.560959
Site 2 31.347745, -108.229963 31.347745 -108.229963
Site 3 32.277621, -107.734724 32.277621 -107.734724
Site 4 31.655494, -106.420484 31.655494 -106.420484
Site 5 30.295053, -104.014528 30.295053 -104.014528

真棒。这正是我们想要看到的,一列用于纬度的浮点和一列用于经度的浮点。

为了反转地理编码,我们将特定的经纬度对(这里为第一行,索引为0)提供给 pygeocoder 的reverse_geocoder函数。

# 将经度和纬度转换为某个位置
results = Geocoder.reverse_geocode(df['latitude'][0], df['longitude'][0])

现在我们可以开始提取我们想要的数据了。

# 打印经纬度
results.coordinates

# (31.3372728, -109.5609559) 

# 打印城市
results.city

# 'Douglas' 

# 打印国家/地区
results.country

# 'United States' 

# 打印街道地址(如果可用)
results.street_address

# 打印行政区
results.administrative_area_level_1

# 'Arizona' 

对于地理编码,我们需要将包含地址或位置(例如城市)的字符串,传入地理编码函数中。 但是,并非所有字符串的格式都是 Google 的 geo-API 可以理解的。 如果由.geocode().valid_address函数验证有效,我们可以转换。

# 验证地址是否有效(即在 Google 的系统中)
Geocoder.geocode("4207 N Washington Ave, Douglas, AZ 85607").valid_address

# True 

因为输出是True,我们现在知道这是一个有效的地址,因此可以打印纬度和经度坐标。

# 打印经纬度
results.coordinates

# (31.3372728, -109.5609559) 

但更有趣的是,一旦地址由 Google 地理 API 处理,我们就可以解析它并轻松地分隔街道号码,街道名称等。

# 寻找特定地址中的经纬度
result = Geocoder.geocode("7250 South Tucson Boulevard, Tucson, AZ 85756")

# 打印街道号码
result.street_number

# '7250' 

# 打印街道名
result.route

# 'South Tucson Boulevard' 

你就实现了它。Python 使整个过程变得简单,只需几分钟即可完成分析。祝好运!

地理定位城市和国家

本教程创建一个函数,尝试获取城市和国家并返回其经纬度。 但是当城市不可用时(通常是这种情况),则返回该国中心的经纬度。

from geopy.geocoders import Nominatim
geolocator = Nominatim()
import numpy as np

def geolocate(city=None, country=None):
    '''
    输入城市和国家,或仅输入国家。 如果可以的话,返回城市的经纬度坐标,否则返回该国家中心的经纬度。
    '''

    # 如果城市存在
    if city != None:
        # 尝试
        try:
            # 地理定位城市和国家
            loc = geolocator.geocode(str(city + ',' + country))
            # 并返回经纬度
            return (loc.latitude, loc.longitude)
        # 否则
        except:
            # 返回缺失值
            return np.nan
    # 如果城市不存在
    else:
        # 尝试
        try:
            # 地理定位国家中心
            loc = geolocator.geocode(country)
            # 返回经纬度
            return (loc.latitude, loc.longitude)
        # 否则
        except:
            # 返回缺失值
            return np.nan

# 地理定位城市和国家
geolocate(city='Austin', country='USA')

# (30.2711286, -97.7436995) 

# 仅仅地理定位国家
geolocate(country='USA')

# (39.7837304, -100.4458824) 

使用 pandas 分组时间序列

# 导入所需模块
import pandas as pd
import numpy as np

df = pd.DataFrame()

df['german_army'] = np.random.randint(low=20000, high=30000, size=100)
df['allied_army'] = np.random.randint(low=20000, high=40000, size=100)
df.index = pd.date_range('1/1/2014', periods=100, freq='H')

df.head()
german_army allied_army
2014-01-01 00:00:00 28755 33938
2014-01-01 01:00:00 25176 28631
2014-01-01 02:00:00 23261 39685
2014-01-01 03:00:00 28686 27756
2014-01-01 04:00:00 24588 25681

Truncate the dataframe

df.truncate(before='1/2/2014', after='1/3/2014')
german_army allied_army
2014-01-02 00:00:00 26401 20189
2014-01-02 01:00:00 29958 23934
2014-01-02 02:00:00 24492 39075
2014-01-02 03:00:00 25707 39262
2014-01-02 04:00:00 27129 35961
2014-01-02 05:00:00 27903 25418
2014-01-02 06:00:00 20409 25163
2014-01-02 07:00:00 25736 34794
2014-01-02 08:00:00 24057 27209
2014-01-02 09:00:00 26875 33402
2014-01-02 10:00:00 23963 38575
2014-01-02 11:00:00 27506 31859
2014-01-02 12:00:00 23564 25750
2014-01-02 13:00:00 27958 24365
2014-01-02 14:00:00 24915 38866
2014-01-02 15:00:00 23538 33820
2014-01-02 16:00:00 23361 30080
2014-01-02 17:00:00 27284 22922
2014-01-02 18:00:00 24176 32155
2014-01-02 19:00:00 23924 27763
2014-01-02 20:00:00 23111 32343
2014-01-02 21:00:00 20348 28907
2014-01-02 22:00:00 27136 38634
2014-01-02 23:00:00 28649 29950
2014-01-03 00:00:00 21292 26395
# 设置数据帧的索引
df.index = df.index + pd.DateOffset(months=4, days=5)

df.head()
german_army allied_army
2014-05-06 00:00:00 28755 33938
2014-05-06 01:00:00 25176 28631
2014-05-06 02:00:00 23261 39685
2014-05-06 03:00:00 28686 27756
2014-05-06 04:00:00 24588 25681
# 将变量提前一小时
df.shift(1).head()
german_army allied_army
2014-05-06 00:00:00 NaN NaN
2014-05-06 01:00:00 28755.0 33938.0
2014-05-06 02:00:00 25176.0 28631.0
2014-05-06 03:00:00 23261.0 39685.0
2014-05-06 04:00:00 28686.0 27756.0
# 将变量延后一小时
df.shift(-1).tail()
german_army allied_army
2014-05-09 23:00:00 26903.0 39144.0
2014-05-10 00:00:00 27576.0 39759.0
2014-05-10 01:00:00 25232.0 35246.0
2014-05-10 02:00:00 23391.0 21044.0
2014-05-10 03:00:00 NaN NaN
# 对每小时观测值求和来按天汇总
df.resample('D').sum()
german_army allied_army
2014-05-06 605161 755962
2014-05-07 608100 740396
2014-05-08 589744 700297
2014-05-09 607092 719283
2014-05-10 103102 135193
# 对每小时观测值求平均来按天汇总
df.resample('D').mean()
german_army allied_army
2014-05-06 25215.041667 31498.416667
2014-05-07 25337.500000 30849.833333
2014-05-08 24572.666667 29179.041667
2014-05-09 25295.500000 29970.125000
2014-05-10 25775.500000 33798.250000
# 对每小时观测值求最小值来按天汇总
df.resample('D').min()
german_army allied_army
2014-05-06 24882.0 31310.0
2014-05-07 25311.0 30969.5
2014-05-08 24422.5 28318.0
2014-05-09 24941.5 32082.5
2014-05-10 26067.5 37195.0
# 对每小时观测值求中值来按天汇总
df.resample('D').median()
german_army allied_army
2014-05-06 24882.0 31310.0
2014-05-07 25311.0 30969.5
2014-05-08 24422.5 28318.0
2014-05-09 24941.5 32082.5
2014-05-10 26067.5 37195.0
# 对每小时观测值取第一个值来按天汇总
df.resample('D').first()
german_army allied_army
2014-05-06 28755 33938
2014-05-07 26401 20189
2014-05-08 21292 26395
2014-05-09 25764 22613
2014-05-10 26903 39144
# 对每小时观测值取最后一个值来按天汇总
df.resample('D').last()
german_army allied_army
2014-05-06 28214 32110
2014-05-07 28649 29950
2014-05-08 28379 32600
2014-05-09 26752 22379
2014-05-10 23391 21044
# 对每小时观测值取第一个值,最后一个值,最高值,最低值来按天汇总
df.resample('D').ohlc()
german_army allied_army
open high
2014-05-06 28755 29206
2014-05-07 26401 29958
2014-05-08 21292 29786
2014-05-09 25764 29952
2014-05-10 26903 27576

按时间分组数据

2016 年 3 月 13 日,Pandas 版本 0.18.0 发布,重采样功能的运行方式发生了重大变化。 本教程遵循 v0.18.0,不适用于以前版本的 pandas。

首先让我们加载我们关心的模块。

# 导入所需模块
import pandas as pd
import datetime
import numpy as np

接下来,让我们创建一些样例数据,我们可以将它们按时间分组作为样本。 在这个例子中,我创建了一个包含两列 365 行的数据帧。一列是日期,第二列是数值。

# 为今天创建 datetime 变量
base = datetime.datetime.today()
# 创建一列变量
# 包含 365 天的 datetime 值
date_list = [base - datetime.timedelta(days=x) for x in range(0, 365)]

# 创建 365 个数值的列表
score_list = list(np.random.randint(low=1, high=1000, size=365))

# 创建空数据帧
df = pd.DataFrame()

# 从 datetime 变量创建一列
df['datetime'] = date_list
# 将列转换为 datetime 类型
df['datetime'] = pd.to_datetime(df['datetime'])
# 将 datetime 列设为索引
df.index = df['datetime'] 
# 为数值得分变量创建一列
df['score'] = score_list

# 让我们看看数据
df.head()
datetime score
datetime
2016-06-02 09:57:54.793972 2016-06-02 09:57:54.793972 900
2016-06-01 09:57:54.793972 2016-06-01 09:57:54.793972 121
2016-05-31 09:57:54.793972 2016-05-31 09:57:54.793972 547
2016-05-30 09:57:54.793972 2016-05-30 09:57:54.793972 504
2016-05-29 09:57:54.793972 2016-05-29 09:57:54.793972 304

在 pandas 中,按时间分组的最常用方法是使用.resample()函数。 在 v0.18.0 中,此函数是两阶段的。 这意味着df.resample('M')创建了一个对象,我们可以对其应用其他函数(meancountsum等)

# 按月对数据分组,并取每组(即每个月)的平均值
df.resample('M').mean()
score
datetime
2015-06-30 513.629630
2015-07-31 561.516129
2015-08-31 448.032258
2015-09-30 548.000000
2015-10-31 480.419355
2015-11-30 487.033333
2015-12-31 499.935484
2016-01-31 429.193548
2016-02-29 520.413793
2016-03-31 349.806452
2016-04-30 395.500000
2016-05-31 503.451613
2016-06-30 510.500000
# 按月对数据分组,并获取每组(即每个月)的总和
df.resample('M').sum()
score
datetime
2015-06-30 13868
2015-07-31 17407
2015-08-31 13889
2015-09-30 16440
2015-10-31 14893
2015-11-30 14611
2015-12-31 15498
2016-01-31 13305
2016-02-29 15092
2016-03-31 10844
2016-04-30 11865
2016-05-31 15607
2016-06-30 1021

分组有很多选项。 你可以在 Pandas 的时间序列文档中了解它们的更多信息,但是,为了你的方便,我也在下面列出了它们。

描述
B business day frequency
C custom business day frequency (experimental)
D calendar day frequency
W weekly frequency
M month end frequency
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
BMS business month start frequency
Q quarter end frequency
BQ business quarter endfrequency
QS quarter start frequency
BQS business quarter start frequency
A year end frequency
BA business year end frequency
AS year start frequency
BAS business year start frequency
BH business hour frequency
H hourly frequency
T minutely frequency
S secondly frequency
L milliseonds
U microseconds
N nanoseconds

按小时分组数据

# 导入库
import pandas as pd
import numpy as np

# 创建 2000 个元素的时间序列
# 每五分钟一个元素,起始于 2000.1.1
time = pd.date_range('1/1/2000', periods=2000, freq='5min')

# 创建 pandas 序列,带有 0 到 100 的随机值
# 将 time 用于索引
series = pd.Series(np.random.randint(100, size=2000), index=time)

# 查看前几行
series[0:10]

'''
2000-01-01 00:00:00    40
2000-01-01 00:05:00    13
2000-01-01 00:10:00    99
2000-01-01 00:15:00    72
2000-01-01 00:20:00     4
2000-01-01 00:25:00    36
2000-01-01 00:30:00    24
2000-01-01 00:35:00    20
2000-01-01 00:40:00    83
2000-01-01 00:45:00    44
Freq: 5T, dtype: int64 
'''

# 按索引的小时值对数据分组,然后按平均值进行汇总
series.groupby(series.index.hour).mean()

'''
0     50.380952
1     49.380952
2     49.904762
3     53.273810
4     47.178571
5     46.095238
6     49.047619
7     44.297619
8     53.119048
9     48.261905
10    45.166667
11    54.214286
12    50.714286
13    56.130952
14    50.916667
15    42.428571
16    46.880952
17    56.892857
18    54.071429
19    47.607143
20    50.940476
21    50.511905
22    44.550000
23    50.250000
dtype: float64 
'''

对行分组

# 导入模块
import pandas as pd

# 示例数据帧
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore'])
df
regiment company name preTestScore postTestScore
0 Nighthawks 1st Miller 4 25
1 Nighthawks 1st Jacobson 24 94
2 Nighthawks 2nd Ali 31 57
3 Nighthawks 2nd Milner 2 62
4 Dragoons 1st Cooze 3 70
5 Dragoons 1st Jacon 4 25
6 Dragoons 2nd Ryaner 24 94
7 Dragoons 2nd Sone 31 57
8 Scouts 1st Sloan 2 62
9 Scouts 1st Piger 3 70
10 Scouts 2nd Riani 2 62
11 Scouts 2nd Ali 3 70
# 创建分组对象。 换句话说,
# 创建一个表示该特定分组的对象。 
# 这里,我们按照团队来分组 pre-test 得分。
regiment_preScore = df['preTestScore'].groupby(df['regiment'])

# 展示每个团队的 pre-test 得分的均值
regiment_preScore.mean()

'''
regiment
Dragoons      15.50
Nighthawks    15.25
Scouts         2.50
Name: preTestScore, dtype: float64 
'''

Pandas 中的分层数据

# 导入模块
import pandas as pd

# 创建数据帧
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore'])
df
regiment company name preTestScore postTestScore
0 Nighthawks 1st Miller 4 25
1 Nighthawks 1st Jacobson 24 94
2 Nighthawks 2nd Ali 31 57
3 Nighthawks 2nd Milner 2 62
4 Dragoons 1st Cooze 3 70
5 Dragoons 1st Jacon 4 25
6 Dragoons 2nd Ryaner 24 94
7 Dragoons 2nd Sone 31 57
8 Scouts 1st Sloan 2 62
9 Scouts 1st Piger 3 70
10 Scouts 2nd Riani 2 62
11 Scouts 2nd Ali 3 70
# 设置分层索引但将列保留在原位
df = df.set_index(['regiment', 'company'], drop=False)
df
regiment company name preTestScore postTestScore
regiment company
Nighthawks 1st Nighthawks 1st Miller 4
1st Nighthawks 1st Jacobson 24 94
2nd Nighthawks 2nd Ali 31 57
2nd Nighthawks 2nd Milner 2 62
Dragoons 1st Dragoons 1st Cooze 3
1st Dragoons 1st Jacon 4 25
2nd Dragoons 2nd Ryaner 24 94
2nd Dragoons 2nd Sone 31 57
Scouts 1st Scouts 1st Sloan 2
1st Scouts 1st Piger 3 70
2nd Scouts 2nd Riani 2 62
2nd Scouts 2nd Ali 3 70
# 将分层索引设置为团队然后公司
df = df.set_index(['regiment', 'company'])
df
name preTestScore postTestScore
regiment company
Nighthawks 1st Miller 4
1st Jacobson 24 94
2nd Ali 31 57
2nd Milner 2 62
Dragoons 1st Cooze 3
1st Jacon 4 25
2nd Ryaner 24 94
2nd Sone 31 57
Scouts 1st Sloan 2
1st Piger 3 70
2nd Riani 2 62
2nd Ali 3 70
# 查看索引
df.index

MultiIndex(levels=[['Dragoons', 'Nighthawks', 'Scouts'], ['1st', '2nd']],
           labels=[[1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2], [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]],
           names=['regiment', 'company']) 

# 交换索引中的级别
df.swaplevel('regiment', 'company')
name preTestScore postTestScore
company regiment
1st Nighthawks Miller 4 25
Nighthawks Jacobson 24 94
2nd Nighthawks Ali 31 57
Nighthawks Milner 2 62
1st Dragoons Cooze 3 70
Dragoons Jacon 4 25
2nd Dragoons Ryaner 24 94
Dragoons Sone 31 57
1st Scouts Sloan 2 62
Scouts Piger 3 70
2nd Scouts Riani 2 62
Scouts Ali 3 70
# 按需求和数据
df.sum(level='regiment')
preTestScore postTestScore
regiment
Nighthawks 61 238
Dragoons 62 246
Scouts 10 264

你可能感兴趣的:(机器学习,数据科学和人工智能技术笔记)