caffe-gpu测试案例

from pylab import *
import matplotlib.pyplot as plt
caffe_root = '/home/brian/caffe'
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
# run scripts from caffe root
import os
os.chdir(caffe_root)
# Download data
os.system('sudo ./data/mnist/get_mnist.sh')
# Prepare data
os.system('sudo ./examples/mnist/create_mnist.sh')
# back to examples
os.chdir('examples')

from caffe import layers as L, params as P


def lenet(lmdb, batch_size):
	# our version of LeNet: a series of linear and simple nonlinear transformations
	n = caffe.NetSpec()

	n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
							 transform_param=dict(scale=1. / 255), ntop=2)

	n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
	n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
	n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
	n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
	n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
	n.relu1 = L.ReLU(n.fc1, in_place=True)
	n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
	n.loss = L.SoftmaxWithLoss(n.score, n.label)

	return n.to_proto()

with open('mnist/lenet_auto_train.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_train_lmdb', 64)))

with open('mnist/lenet_auto_test.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_test_lmdb', 100)))

os.system('cat mnist/lenet_auto_train.prototxt')

os.system('cat mnist/lenet_auto_solver.prototxt')

caffe.set_device(0)
caffe.set_mode_gpu()

### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.SGDSolver('mnist/lenet_auto_solver.prototxt')

# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]


# just print the weight sizes (we'll omit the biases)
[(k, v[0].data.shape) for k, v in solver.net.params.items()]

solver.net.forward()  # train net
solver.test_nets[0].forward()  # test net (there can be more than one)

imshow(solver.net.blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print('train labels:', solver.net.blobs['label'].data[:8])
plt.show()

imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print('test labels:', solver.test_nets[0].blobs['label'].data[:8])
plt.show()

solver.step(1)

imshow(solver.net.params['conv1'][0].diff[:, 0].reshape(4, 5, 5, 5)
       .transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray'); axis('off')
plt.show()

niter = 200
test_interval = 25
# losses will also be stored in the log
train_loss = zeros(niter)
test_acc = zeros(int(np.ceil(niter / test_interval)))
output = zeros((niter, 8, 10))

# the main solver loop
for it in range(niter):
	solver.step(1)  # SGD by Caffe

	# store the train loss
	train_loss[it] = solver.net.blobs['loss'].data

	# store the output on the first test batch
	# (start the forward pass at conv1 to avoid loading new data)
	solver.test_nets[0].forward(start='conv1')
	output[it] = solver.test_nets[0].blobs['score'].data[:8]

	# run a full test every so often
	# (Caffe can also do this for us and write to a log, but we show here
	#  how to do it directly in Python, where more complicated things are easier.)
	if it % test_interval == 0:
		print
		'Iteration', it, 'testing...'
		correct = 0
		for test_it in range(100):
			solver.test_nets[0].forward()
			correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)
						   == solver.test_nets[0].blobs['label'].data)
		test_acc[it // test_interval] = correct / 1e4

_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(niter), train_loss)
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))
plt.show()

for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(output[:50, i].T, interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label')
plt.show()

for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(exp(output[:50, i].T) / exp(output[:50, i].T).sum(0), interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label')
plt.show()

if __name__ == 'main':
	pass





 

你可能感兴趣的:(算法)