- 机器学习之路:FaceBook预测案例分析----->KNN算法的应用与调优
是一个Bug
机器学习算法人工智能
小白的机器学习之路(二)引子学习机器学习基础:从理论到实践了解机器学习机器学习的定义机器学习的分类机器学习的基本原理掌握数据预处理数据清洗特征选择特征工程分类算法sklearn转换器和预估器KNN算法获取数据数据集划分特征工程—标准化KNN算法引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),目标一:学习机器学习基础:了解机器学习的定义、分类和基本原理。掌握数据预处理:学习数据清洗
- 案例为师实战为王-开启Python机器学习之路视频教程+课件
globals_11de
─章节01:Python基础与科学计算库numpy│课时1:Python基础2910.mp4│课时2:Python核心结构5750.mp4│课时3:Numpy数组3518.mp4│├─章节02:数据分析处理Pandas库│课时4:Numpy常用函数3344.mp4│课时5:Pandas数据处理方法5926.mp4│课时6:Pandas核心操作2542.mp4│├─章节03:回归算法│课时7:机器学
- 仅需10分钟:开启你的机器学习之路
Datawhale
选自freecodecamp作者:TirmidziFaizalAflahi机器之心编译机器学习之路虽漫漫无垠,但莘莘学子依然纷纷投入到机器学习的洪流中。如何更有效地开始机器学习呢?所谓「八仙过海,各显神通」,本文作者以Python语言为工具进行机器学习,并以Kaggle竞赛中的泰坦尼克号项目进行详细解读。跟着小编来看看吧!随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Py
- 机器学习之路:基于pytorch实现完成的模型训练套路
是一个Bug
机器学习pytorch人工智能
小白的机器学习之路(五)引子假设model是你的PyTorch模型创建一个与模型结构一致的新实例加载保存的模型参数假设model是你的PyTorch模型简单的线性回归模型的算法实现,可视化引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理)目标五:学习深度学习框架:学习使用PyTorch或TensorFlow等深度学习框架。目标任务:使用深度学习框架搭建一个更复杂的神经网络,并在一个数
- 机器学习之路
编程小兔崽
原创:编程TWO编程小兔崽今天机器学习方法一检索能力最近有朋友问我是如何学习机器学习的,说最近机器学习、人工智能这些特别火,以后想走机器学习。有这个想法是特别好的,但是跟大家说,如果是因为机器学习工资高,最近特别火而想走机器学习,基本上是凉凉的、没戏。今天我把我这几个项目的演示过程分享给大家,让大家了解了解工智能,有一个大概的,什么是人工智能。我不建议大家刚刚学编程就去看机器学习的视频资料,有能力
- 小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络
是一个Bug
机器学习机器学习神经网络pytorch
小白的机器学习之路(四)引子神经网络的基本结构反向传播算法和激活函数优化器如何通过pytorch搭建自己的BPnetwork引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),考虑到上次研究深度学习算法还是两年前,我薄弱的基础已经无法支持当前的工作,通过前期的学习准备(其它算法工程师和chatgpt的帮助),制定了五天的初步复习计划----初步定为:目标四:学习深度学习基础:了解神经
- python svr回归_机器学习入门之机器学习之路:python支持向量机回归SVR 预测波士顿地区房价...
weixin_39755712
pythonsvr回归
本文主要向大家介绍了机器学习入门之机器学习之路:python支持向量机回归SVR预测波士顿地区房价,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。支持向量机的两种核函数模型进行预测git:https://github.com/linyi0604/MachineLearningfromsklearn.datasetsimportload_bostonfromsklearn.cross
- 如何开始机器学习
SakuraForever
机器学习
在开始机器学习之路前,我们首先谈谈何为技术。不是学了python就是走上了机器学习,不是学了Tensorfolw,caffe2就是开发者。互联网上的追捧,培训班的速成承诺,掀起了一股莫名的风气,仿佛一夜之间,大家都能在短时间内,按照一门教程,顺利走上一条康庄大道。如果你也是这么想。那么还是出门右拐去百度云盘搜索“XXX速成班”吧,享受群体的狂欢。如果你愿意继续看下去,那么我要说,技术,必然是枯燥的
- 【机器学习之路】开山篇 | 机器学习介绍及其类别和概念阐述
计算机魔术师
机器学习逻辑回归算法python人工智能
♂️个人主页:@计算机魔术师作者简介:CSDN内容合伙人,全栈领域优质创作者。机器学习之路系列(一)作者:计算机魔术师版本:1.0(2022.2.25)注释:文章会不定时更新补充文章目录前言一、机器学习概览1.1有监督学习和无监督学习1.1.1监督学习1.1.2无监督学习1.1.3半监督学习1.1.4强化学习1.2批量学习和在线学习1.2.1在线学习1.2.2增量学习1.2.3核外学习1.2.
- 祭天
xian_yu
仅以此文开启我的小白机器学习之路对于想入门的同学来说,最有名的莫过于TensorFLow了,下面就所以说一下我如何配置1,python与anacoda,然后添加环境变量,注意anacoda添加的是\yourpath\Scripts2,cuda,确认你的显卡在Nvidia的支持CUDA加速的显卡列表中。https://developer.nvidia.com/cuda-gpushttps://dev
- 2021版 | 机器学习入门指南
人工智能与算法学习
算法编程语言python机器学习人工智能
这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。pdf版思维导图,后台回复:指南Python——书之前跟出版社合作,书柜里积攒了很多Python相关的书,这里推荐三本最有价值的吧:《流畅的Python》,很厚,比较全面,可以作为工具书常常翻看。《Python编程从入门到实践(第2版)》非常全面,对新手还算友好,
- python机器学习手写字体识别,机器学习之路: python 支持向量机 LinearSVC 手写字体识别...
诗遥一妈
使用python3学习sklearn中支持向量机api的使用可以来到我的git下载源代码:https://github.com/linyi0604/MachineLearning#导入手写字体加载器fromsklearn.datasetsimportload_digitsfromsklearn.cross_validationimporttrain_test_splitfromsklearn.pr
- l2正则化python_机器学习入门之机器学习之路: python线性回归 过拟合 L1与L2正则化...
weixin_39831705
l2正则化python
本文主要向大家介绍了机器学习入门之机器学习之路:python线性回归过拟合L1与L2正则化,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。正则化:提高模型在未知数据上的泛化能力避免参数过拟合正则化常用的方法:在目标函数上增加对参数的惩罚项削减某一参数对结果的影响力度L1正则化:lasso在线性回归的目标函数后面加上L1范数向量惩罚项。f=w*x^n+b+k*||w||1x为输入的样
- 从0开始学习深度强化学习之深度学习和深度强化学习的区别之浅显理解
脉动人生
DRL采坑之路游戏神经网络算法强化学习深度学习
引文机器学习之路路阻且长,在我从本科到研究生期间也见过很多机器学习的算法,像很多都是CNN,ANN什么什么NN啥的。在刚开始入门深度强化学习的时候,我也觉得深度强化学习(DeepReinforcementLearing)是一个很高级的东西,在网上查到谷歌的Deepmind搞出来的Alphago就是利用深度强化学习算法搞出来的。但是对于刚开始入门深度强化学习之前无任何机器学习经验的同学来说,可能就略
- python识别虚假新闻的分类器_机器学习之路: python 朴素贝叶斯分类器 MultinomialNB 预测新闻类别...
weixin_39807541
1fromsklearn.datasetsimportfetch_20newsgroups2fromsklearn.cross_validationimporttrain_test_split3#导入文本特征向量转化模块4fromsklearn.feature_extraction.textimportCountVectorizer5#导入朴素贝叶斯模型6fromsklearn.naive_bay
- python主成分分析法降维_机器学习之路:python 特征降维 主成分分析 PCA
梨漾
python主成分分析法降维
1fromsklearn.svmimportLinearSVC2fromsklearn.metricsimportclassification_report3fromsklearn.decompositionimportPCA4importpandasaspd5importnumpyasnp6‘‘‘7主成分分析:8特征降低维度的方法。9提取主要特征成分,有关联的特征进行运算组合10丢弃不显著的特征
- sklearn的机器学习之路:逻辑回归
Augus_Xu
机器学习线性模型逻辑回归机器学习
1.基础概念sigmoid函数:处理二分类问题时,我们最后需要输出分类结果[0,1],而回归得到的是一个(−∞,+∞)(−∞,+∞)的数,因此我们需要使用sigmoid函数。函数定义:其图像为:通过输入的x而转变成(0,1)的数,此处x应该为预测的值,即c0x0+c1x1+...+cnxnc0x0+c1x1+...+cnxn,因此上式可转变为f(x)=11+e−(c0x0+c1x1+...+cnx
- 我的机器学习之路
来自文家市的那个小孩
规划机器学习
重拾丢弃四年的课本,毅然考取交大研究生,回来继续深造,也算一个机遇,因为15年的时候大数据开始成为风口。来到交大,也可谓一波三折,最开始误打误撞进入无线网实验室,偏离了初衷,好在有换导师的机会,挑出这个坑,进入自然语言处理实验室,它是人工智能上的明珠,跌跌撞撞,在里面软磨硬泡半年有余,却始终不是滋味,于是再次鼓起勇气,跳出原来的圈子,进入机器学习的研究领域。研究生阶段虽然快要结束,但真正我在这一领
- python 多项式拟合 多特征值_机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合...
weixin_40008870
python多项式拟合多特征值
分享一下线性回归中欠拟合和过拟合是怎么回事~为了解决欠拟合的情经常要提高线性的次数建立模型拟合曲线,次数过高会导致过拟合,次数不够会欠拟合。再建立高次函数时候,要利用多项式特征生成器生成训练数据。下面把整个流程展示一下模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程git:https://github.com/linyi0604/MachineLearning在做线性回归预测时候,为了提高模型的泛化
- 程序员如何开启机器学习之路?我也遇到过这个问题
weixin_34409357
大数据嵌入式数据结构与算法
我曾是一名想进入AI行业的软件开发者。为了更快熟悉这里边的门道,我阅读了机器学习的书籍,浏览了不少帖子,还学习了Coursera上关于机器学习的课程。但是,但是,依然不知道如何开始…...你是否也有这样的经历呢?图片版权归PeterAlfredHess所有很多开发者都问我:我该如何开始学习机器学习?记不清有多少人问过这个问题了。鉴于此,我专门写了一篇文章来解答大家的疑惑。通过本文,你会知道:为什么
- pytorch 训练过程可视化
qq_40127191
pytorchpytorch深度学习人工智能
使用pythonTqdm进度条库让你的python进度可视化-pytorch中文网211024-Pytorch模型训练中显示进度条_专注机器学习之路-CSDN博客_pytorch训练进度条从keras转到pytorch,没有进度显示,很难受。使用tqdm可以解决。ps:同时碰到速度慢的问题,减少io操作即可。
- 2015.2.8--记录我的机器学习之路--现代启发式算法之蚁群算法
懒懒的兔斯基
算法蚁群算法启发式搜索机器学习machinelearning
蚁群算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 2015.2.7--记录我的机器学习之路--现代启发式算法之遗传算法
懒懒的兔斯基
记录我的机器学习之路machinelearning启发式搜索机器学习算法遗传算法
遗传算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 【机器学习之路】(转载)
YYIverson
【数据分析】机器学习与统计学机器学习人工智能广告
作者主页:https://www.nowcoder.com/profile/210306401/myDiscussPost【我的机器学习入门之路(上)——传统机器学习】这篇博客主要记录了我自己的学习路线及相应的资料汇总。总时间跨度约为6个月,主要是利用了晚上的时间和周末的时间,每天坚持下来,日积月累,回过头来,可能会惊讶于自己的进步。对于一个机器学习的小白来说,往往不知道如何入门机器学习,毕竟机器
- <阿瑶机器学习之路>使用SNN对DEAP数据集进行情绪四分类
七七鸭灬
SNN阿瑶机器学习之路分类人工智能
目录SNN基础知识讲解DEAP数据集介绍使用SNN搭建一维Resnet网络进行情绪分类尾言SNN基础知识讲解SpikingNeuralNetwork(脉冲神经网络,SNN)简介第一代神经网络(感知器),第二代神经网络(ANN)它们都是基于神经脉冲的发放频率进行编码,但是神经元的脉冲发放频率并不能完全捕获脉冲序列种包含的信息,因此第三代神经网络(SNN)登场了。第三代神经网络具有更强的生物可解释性的
- 机器学习之路——KNN+交叉验证
qq_39623031
机器学习算法人工智能
KNN分类模型概念:简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类(k-NearestNeighbor,KNN)k值的作用欧几里得距离(EuclideanDistance)如何进行电影分类众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问题。没有哪个电影人会说自己制
- 机器学习之路--机器学习算法一览,应用建议与解决思路
abzs30820
人工智能python大数据
作者:寒小阳时间:2016年1月。出处:http://www.lai18.com/content/2440126.html声明:版权所有,转载请联系作者并注明出处1.引言提起笔来写这篇博客,突然有点愧疚和尴尬。愧疚的是,工作杂事多,加之懒癌严重,导致这个系列一直没有更新,向关注该系列的同学们道个歉。尴尬的是,按理说,机器学习介绍与算法一览应该放在最前面写,详细的应用建议应该在讲完机器学习常用算法之
- 我的机器学习之路 第一关
大梦想家林先生
机器学习之路(之半途而废)机器学习监督学习无监督学习
一、初始机器学习1.什么是机器学习?使计算机像人一样,能够通过观察学习获得经验。2.机器学习的分类:监督学习、无监督学习、强化学习以及推荐系统。3.监督学习(1)定义:给定计算机一定的规则参照,让其对数据进行分析,预测其输出,做出好的决策;(2)分类:回归问题(预测连续值输出)分类问题(预测离散值输出)理解:回归问题和分类问题的区别在于对预测结果类型的不同。例如房价的预测就是连续性的,就属于回归问
- 机器学习之路15
天天学习学习
机器学习聚类算法
无监督学习没有目标值--->无监督学习。无监督学习的算法包括,PCA(降维)和K-Means聚类算法。K-Means聚类算法:算法的原理。聚类效果图算法的步骤:APIK—means算法的模型评估模型评估的API代码:
- 机器学习之路14
天天学习学习
机器学习逻辑回归人工智能
逻辑回归逻辑回归应用于二分类问题,例如:逻辑回归的原理输入逻辑回归的输入就是一个线性回归的结果激活函数sigmoid函数:回归的结果输入到sigmoid函数当中输出的结果是一个在[0,1]当中的概率值,阈值默认为0.5(即大于0.5为是,小于0.5为否)损失机器优化在逻辑回归中,称之为对数拟然损失,公式如下:那么我们如何理解这个式子呢?可以看到,当hg(x)==1时,损失函数的值为0,当hg(x)
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro