【LeetCode】4. 寻找两个正序数组的中位数(Hard)

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1nums2

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))

你可以假设 nums1nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

思路:

  1. 限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解。

  2. 中位数的定义,如果某个有序数组长度是奇数,那么其中位数就是最中间那个,如果是偶数,那么就是最中间两个数字的平均值。对于数组来说,可以用同样的方法获取到中位数。

    假设两个有序数组的长度分别为m和n,由于两个数组长度之和 m+n 的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。

    分别找第 (m+n+1) / 2 个数,和 (m+n+2) / 2 个数,然后求其平均值即可,这对奇偶数均适用。假如 m+n 为奇数的话,那么其实 (m+n+1) / 2 和 (m+n+2) / 2 的值相等,相当于两个相同的数字相加再除以2,还是其本身。

  3. 定义一个函数来在两个有序数组中找到第K个元素,首先,为了避免产生新的数组从而增加时间复杂度,我们使用两个变量i和j分别来标记数组nums1和nums2的起始位置。然后来处理一些边界问题,比如当某一个数组的起始位置大于等于其数组长度时,说明其所有数字均已经被淘汰了,相当于一个空数组了,那么实际上就变成了在另一个数组中找数字,直接就可以找出来了。

  4. 如果K=1的话,那么我们只要比较nums1和nums2的起始位置i和j上的数字就可以了。

  5. 一般情况需要使用二分查找法,对K二分,意思是我们需要分别在nums1和nums2中查找第K/2个元素,注意这里由于两个数组的长度不定,所以有可能某个数组没有第K/2个数字,所以我们需要先检查一下,数组中到底存不存在第K/2个数字,如果存在就取出来,否则就赋值上一个整型最大值。

    赋予最大值的意思只是说如果第一个数组的K/2不存在, 则说明这个数组的长度小于K/2,那么另外一个数组的前K/2个我们是肯定不要的。 举个例子,假如第一个数组长度是2,第二个数组长度是12,则K为7,K/2为3,因为第一个数组长度小于3,则无法判断中位数是否在其中,而第二个数组的前3个肯定不是中位数!故当K/2不存在时,将其置为整数型最大值,这样就可以继续下一次循环

    如果某个数组没有第K/2个数字,那么我们就淘汰另一个数字的前K/2个数字即可。有没有可能两个数组都不存在第K/2个数字呢,这道题里是不可能的,因为我们的K不是任意给的,而是给的m+n的中间值,所以必定至少会有一个数组是存在第K/2个数字的。

    最后就是二分法的核心啦,比较这两个数组的第K/2小的数字midVal1和midVal2的大小,如果第一个数组的第K/2个数字小的话,那么说明我们要找的数字肯定不在nums1中的前K/2个数字,所以我们可以将其淘汰,将nums1的起始位置向后移动K/2个,并且此时的K也自减去K/2,调用递归。反之,我们淘汰nums2中的前K/2个数字,并将nums2的起始位置向后移动K/2个,并且此时的K也自减去K/2,调用递归即可。

    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int m = nums1.length;
        int n = nums2.length;
        int left = (m + n + 1) / 2;
        int right = (m + n + 2) / 2;
        //假如 m+n 为奇数的话,那么其实 (m+n+1) / 2 和 (m+n+2) / 2 的值相等,相当于两个相同的数字相加再除以2,还是其本身。
        //加入 m+n 为偶数的话,(m+n+1) / 2 和 (m+n+2) / 2 的值除以2就是中位数的值。
        return (findKth(nums1, 0, nums2, 0, left) + findKth(nums1, 0, nums2, 0, right)) / 2.0;
    }

    //i: nums1的起始位置 j: nums2的起始位置
    public int findKth(int[] nums1, int i, int[] nums2, int j, int k){

        //当某一个数组的起始位置大于等于其数组长度时,说明其所有数字均已经被淘汰了,相当于一个空数组了,
        //那么实际上就变成了在另一个数组中找数字,直接就可以找出来了。
        if( i >= nums1.length) return nums2[j + k - 1];//nums1为空数组
        if( j >= nums2.length) return nums1[i + k - 1];//nums2为空数组

        //如果K=1的话,那么我们只要比较nums1和nums2的起始位置i和j上的数字就可以了。
        if(k == 1){
            return Math.min(nums1[i], nums2[j]);
        }

        //我们需要分别在nums1和nums2中查找第K/2个元素,注意这里由于两个数组的长度不定,所以有可能某个数组没有第K/2个数字,
        // 所以我们需要先检查一下,数组中到底存不存在第K/2个数字,如果存在就取出来,否则就赋值上一个整型最大值(因为无法判断是否存在最大值,但是可以判断第二个数组的前面几个数一定不是中位数)。
        int midVal1 = (i + k / 2 - 1 < nums1.length) ? nums1[i + k / 2 - 1] : Integer.MAX_VALUE;
        int midVal2 = (j + k / 2 - 1 < nums2.length) ? nums2[j + k / 2 - 1] : Integer.MAX_VALUE;
        // 比较这两个数组的第K/2小的数字midVal1和midVal2的大小,如果第一个数组的第K/2个数字小的话,
        // 那么说明我们要找的数字肯定不在nums1中的前K/2个数字,所以我们可以将其淘汰,将nums1的起始位置向后移动K/2个,并且此时的K也自减去K/2,调用递归。
        // 反之,我们淘汰nums2中的前K/2个数字,并将nums2的起始位置向后移动K/2个,并且此时的K也自减去K/2,
        // 调用递归即可。
        if(midVal1 < midVal2){
            return findKth(nums1, i + k / 2, nums2, j , k - k / 2);
        }else{
            return findKth(nums1, i, nums2, j + k / 2 , k - k / 2);
        }
    }

复杂度分析:
时间复杂度:O(log(m+n)),因为使用了二分法对两个数组进行查找。
空间复杂度:O(1) ,因为变量数量恒定。

你可能感兴趣的:(LeetCode)