- 如何高效训练通义万相2.1的LoRA:从原理到实战指南
Liudef06小白
AI作画图生视频lora通义万相WAN2.1
在AI图像生成领域,通义万相2.1作为领先的扩散模型,其官方API虽功能强大,但定制能力有限。LoRA(Low-RankAdaptation)技术正是解决这一痛点的关键钥匙——它允许开发者以极低成本实现模型个性化定制。本文将详细解析训练通义万相2.1LoRA的全流程,助你掌握定制专属AI艺术家的核心技能。一、认识通义万相2.1与LoRA1.1通义万相2.1核心特性多模态理解:精准解析复杂文本提示(
- RAGFlow是一个基于深度文档理解的开源RAG引擎
lyh1344
深度优先
RAGFlow概述RAGFlow是一款基于深度文档理解的开源RAG(检索增强生成)引擎,专注于处理复杂文档结构并提供精准的语义检索与生成能力。其核心优势在于结合多模态文档解析和智能分段技术,优化传统RAG流程中的信息提取与答案生成效果。核心特性深度文档理解支持PDF、PPT、Word、Excel等格式的解析,通过OCR、表格识别、布局分析等技术提取文本、图表及结构化数据,解决传统RAG中非文本内容
- 从实验室到产业:IndexTTS 在六大核心场景的落地实践
gogoMark
人工智能
一、内容创作:重构数字内容生产范式在短视频创作领域,IndexTTS的语音克隆技术彻底改变了配音流程。B站UP主通过5秒参考音频即可克隆出郭老师音色,生成的“各位吴彦祖们大家好”语音相似度达97%,单条视频播放量突破百万。其核心优势在于支持多语言混合输入,中英文混杂文本(如“大家好,我现在正在bilibili体验AI科技”)的自然度评分达0.796,接近人类基准0.85。通过批次推理模式,用户可将
- SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING 实战指南
阿蒙Armon
SQLServersql算法数据库sqlserver
SQL字符串截取函数全解析:LEFT、RIGHT、SUBSTRING实战指南一、引言:字符串处理在SQL中的核心地位在数据清洗、报表开发、ETL流程中,字符串处理是SQL编程的高频操作。无论是从复杂文本中提取关键信息,还是对数据进行格式化处理,掌握字符串截取函数都是必备技能。本文将系统解析SQL中最常用的三个字符串截取函数:LEFT、RIGHT和SUBSTRING,通过语法解析、参数说明和实战示例
- LayoutLM模型使用记录
Mark_Aussie
nlp人工智能
在文档处理和信息提取领域,如何让机器精准地理解和处理复杂文档是一个挑战。文档不仅包含文本信息,还包括布局、图像等非文本元素,这些元素在传递信息时起着至关重要的作用,而传统的NLP模型通常忽略了这些视觉元素。LayOutLM是一种创新的深度学习模型,结合了传统的文本处理能力和对文档布局的理解,从而在处理包含丰富布局信息的文档时表现出色。例如,在处理一份报告时,用户不仅关注报告中的文字内容,还会关注图
- 本地部署dify+ragflow+deepseek ,结合小模型实现故障预测,并结合本地知识库和大模型给出维修建议
算法小菜鸟成长心得
语言模型
1.准备工作使用ollama拉取deepseek-r1:7b官网下载ollamaollamarundeepseek-r1:7bollamalistRagflow专注于构建基于检索增强生成(RAG)的工作流,强调模块化和轻量化,适合处理复杂文档格式和需要高精度检索的场景。Dify则旨在降低大型语言模型(LLM)应用开发的门槛,提供低代码甚至无代码的开发体验,适合快速构建和部署多种AI应用。因此文档处
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 高精度文档解析利器:Mistral OCR 全面解析与技术应用
gs80140
AIocrMistral
目录高精度文档解析利器:MistralOCR全面解析与技术应用一、什么是MistralOCR?二、MistralOCR的核心特点✅1.支持复杂文档结构解析✅2.高识别精度✅3.与AI系统深度集成✅4.可扩展性与容错能力三、技术原理简述四、如何在OpenWebUI中启用MistralOCR?✅步骤一:上传文档✅步骤二:选择加载器为"MistralOCR"✅步骤三:进入对话或知识检索五、应用场景与实践
- Hive优化原则及对应优化方法
datacode_wud
Hivehivehadoopbigdata
Hive优化未经允许禁止转载A、执行过程查询B、优化原则1、提前过滤数据列剪裁子查询过滤分区剪裁写明连接条件2、减少Job多表选用相同key连接unionall减少groupby使用使用同一表unionall合理使用UDTF函数3、解决数据倾斜小表放前大表放后使用mapjoin使用map端groupby4、设置合理的mapreduce的task数复杂文件增加map个数小文件合并map前合并mapr
- AI日报 - 2025年05月19日
NingboWill
AI日报人工智能
一、【行业深度】1.腾讯混元图像2.0发布:实时生图毫秒级速度与超写实画质热点聚焦:腾讯发布了混元图像2.0模型,大幅提升了AI图像生成的速度和质量,并新增了实时绘画板功能。新模型结合高效的图像编解码器和全新的扩散架构,实现了毫秒级响应速度,同时增强了图像的真实感与细节丰富度,在GenEval基准测试中表现出色。⚡进展追踪:腾讯混元2.0不仅在生图速度上领先,还提升了复杂文本指令的理解准确率至95
- Python爬虫学习路径与实战指南 05
晨曦543210
学习
一、数据清洗与预处理的魔鬼细节1.非结构化文本处理正则表达式进阶:用命名分组提取复杂文本。importretext="价格:¥199.00折扣价:¥159.00"pattern=r"价格:¥(?P\d+\.\d{2})折扣价:¥(?P\d+\.\d{2})"match=re.search(pattern,text)print(match.groupdict())#{'price':'199.00'
- 【Python爬虫实战】正则:从基础字符匹配到复杂文本处理的全面指南
易辰君
python爬虫python爬虫开发语言
个人主页:https://blog.csdn.net/2401_86688088?type=blog系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html目录前言一、正则表达式(一)正则表达式的基本作用(二)正则表达式的基本组成(三)常用的正则表达式示例(四)正则表达式的应用场景二、re模块的介绍(一)re模块中的常用函数(二
- Windows系统下MinerU的CUDA加速配置指南
林语微光
论文翻译python从入门到实践windowsmineru接口调用人工智能
Windows系统下MinerU的CUDA加速配置指南快速解锁GPU性能,提升文档解析效率1、简介MinerU是一款高效的文档解析工具,支持通过CUDA加速显著提升处理速度。本指南详细说明如何在Windows系统中配置CUDA环境,并启用MinerU的GPU加速功能,帮助用户充分利用NVIDIA显卡的计算能力,优化复杂文档的解析效率。2、前提条件在开始配置前,请确保满足以下条件:硬件要求:NVID
- 【RAG 篇】【多模态文档理解框架与文档大模型全景解析【开发者实战指南】
大F的智能小课
大模型理论和实战人工智能深度学习算法
引言随着金融票据、医疗报告等场景的数字化需求激增,传统OCR技术已无法满足复杂文档的理解需求。本文将深入解析6多模态文档理解框架和3大文档专用LLM,提供从技术选型到落地评估的全链路指南,所有项目均经2024年6月实测验证。一、多模态文档理解框架(一)Donut(NAVER,2022)技术亮点:端到端无OCR架构,直接解析PDF/图片。支持文档视觉问答(DocVQA)。在CORD数据集F1达95.
- 文件有几十个T,需要做rag,用ragFlow能否快速落地呢?
努力努力再努力呐
PyTorchpython多模态RAG学习pytorchhuggingface多模态OpenCompass
一、RAGFlow的优势1、RAGFlow处理大规模数据性能:(1)、RAGFlow支持分布式索引构建,采用分片技术,能够处理TB级数据。(2)、它结合向量搜索和关键词搜索,提高检索效率。(3)、通过智能文档分块和混合检索机制,优化大规模数据处理。2、实际应用案例:(1)、RAGFlow被用于历史辅导助手、机加工行业设备维保等场景。(2)、这些案例展示了RAGFlow在解析复杂文档和提高检索效率方
- WPS Office安卓版文档编辑功能与兼容性评测【高效编辑】
电脑高手-小林
wpsandroid
一、界面设计与操作体验WPSOffice安卓版采用简洁直观的界面设计,首页默认展示近期文档列表,支持一键新建文档、表格或演示文稿。整体操作逻辑与PC端保持一致,新用户也能快速上手。编辑工具栏设计合理,常用功能如字体设置、段落调整、插入图片等均可直接访问,提升编辑效率。文档编辑过程中支持多指缩放、滑动对齐、长按选中等移动端专属操作,使得在手机上处理复杂文档成为可能。此外,WPS提供了云文档功能,可实
- Python正则表达式有哪些常用匹配字符?
程序员总部
pythonpython正则表达式mysql
处理文本数据时,我们经常需要查找、提取或替换特定模式的字符串。这时候正则表达式就成了程序员最强大的武器之一。今天我们就来详细聊聊Python中那些最常用的正则表达式字符和它们的实际用法。为什么要学正则表达式?假设你遇到这些场景:从日志中提取所有日期时间验证用户输入的邮箱格式是否正确批量修改代码中的变量名抓取网页中的特定数据用普通字符串方法处理这些需求会很麻烦!正则表达式能让你用简洁的模式描述复杂文
- 图像处理有哪些核心技术?技术发展现状如何?
合合信息解决方案
图像处理
在数字化信息爆炸的时代,文档图像预处理技术正悄然改变着我们处理文字信息的方式。无论是手持拍摄的收据、扫描仪中的身份证,还是工业机器人采集的复杂文档,预处理技术都在背后默默提升着OCR(光学字符识别)系统的性能。在合合信息发布的《2025智能文档技术与应用白皮书》一书中,视角也集中在了文档图像预处理技术上!在白皮书介绍中,作为OCR流程中的关键一步,在文档图像预处理领域,核心技术进一步细化为切边处理
- 两层检索策略:摘要检索 + 内容检索在 RAG 中的实践
佑瞻
RAGRAGpythonllamaindex分层检索
在企业级RAG系统开发中,面对成百上千的复杂文档,我们常常会陷入这样的困境:直接检索原始内容容易被海量细节淹没,只依赖摘要又担心丢失关键信息。有没有一种方案能兼顾「全局视角」和「细节把控」?今天我们分享一种「摘要检索+内容检索」的两层检索策略,通过LlamaIndex框架实现摘要与原始内容的分层管理与递归检索,帮我们在复杂知识环境中找到精准答案。一、分层检索的核心思想:先定位「知识地图」,再深挖「
- 开源的7B参数OCR视觉大模型:RolmOCR
Panesle
前沿ocr人工智能大模型开源
1.背景介绍早些时候,AllenInstituteforAI发布了olmOCR,这是一个基于Qwen2-VL-7B视觉语言模型(VLM)的开源工具,用于处理PDF和其他复杂文档的OCR(光学字符识别)。开发团队对该工具的高质量和开源特性感到兴奋,并探索了如何利用更新的基础模型和一些轻量级优化来进一步改进它。2.RolmOCR的发布开发团队开发了RolmOCR,作为olmOCR的替代方案。它具有以下
- 小体积大智慧!IBM开源的文档解析神器SmolDocling如何让复杂文档处理变得简单高效?
遇见小码
AI棱镜实验室开源人工智能运维AIGC
每天面对扫描文件、手写笔记、代码截图等复杂文档,你是否还在手动整理排版?今天介绍的这款由IBM与HuggingFace联合推出的开源模型SmolDocling,或许能成为你的效率救星。它仅需256MB内存,就能将图片中的文字、代码、公式、图表等元素一键转为结构化文档,彻底解放你的双手!一、SmolDocling是什么?SmolDocling是基于视觉语言模型(VLM)技术开发的文档处理工具,属于轻
- 日常偷懒(一)正则表达式小记
不知道叫什么呀
用AI满足我的好奇心正则表达式学习AIGC我的AI老师python
平时工作中有很多dritywork,学会偷懒之后真的可以帮我们省很多时间来摸鱼!而正则表达式是我们的偷懒必备装备,会用以后用起来会特别爽~。正则表达式(RegularExpression,简称Regex)是一种用于匹配和操作文本模式的字符串工具,通过特殊语法规则可以快速搜索、替换或提取复杂文本中的特定内容。以下通过概念拆解与实例说明其核心用法:一、基础概念1.核心功能模式匹配:验证字符串是否符合特
- LangChain教程 - RAG - PDF解析
花千树-010
LangChainlangchainpdfpythonAIGC
系列文章索引LangChain教程-系列文章在现代人工智能和自然语言处理(NLP)应用中,处理PDF文档是一项常见且重要的任务。由于PDF格式的复杂性,包含文本、图像、表格等多种内容结构,高效、准确地解析PDF需要强大的工具支持。LangChain提供了一套完善的PDF加载器(PDFLoader),支持从纯文本提取到复杂文档解析,并集成了OCR(光学字符识别)功能,能够处理扫描版PDF或包含嵌入图
- Java动态生成Word终极指南:poi-tl与Aspose.Words性能对比及选型建议
天机️灵韵
开源项目编程语言vscodeJavaword模板
在Java中实现复杂文档生成(如合同、报表)时,poi-tl、Aspose.Words和docx4j是三个主流的模板技术方案。以下是它们的核心对比和选型建议:1.poi-tl(基于ApachePOI的模板引擎)定位:轻量级开源库,基于ApachePOI封装,简化模板操作。核心优势:模板语法灵活:通过{{@var}}、{{?section}}等标签实现文本、表格、列表、图片的动态插入。代码简洁:相比
- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- 如何快速提取PDF中的图片?这款免费工具让你事半功倍!
10211234567890
pdf编辑pdfpdf提取图片pdf数据提取pdf提取
在日常学习和工作中,PDF文件几乎成了我们处理文档的标配。但你是否遇到过这样的烦恼:想从PDF里提取图片,却只能手动截图,效率低还容易模糊?尤其是面对几十页的复杂文档,简直让人抓狂……别急!今天分享一个亲测高效的解决方案——完全免费、无需注册、一键提取PDF图片的工具,3分钟搞定难题!为什么你需要专业的PDF图片提取工具?手动截图太麻烦:图片位置分散、尺寸不一,截图后还需裁剪整理,耗时耗力。图片质
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 正则表达式捕获组详解:从入门到掌握
漠月瑾-西安
前端小问题点记录正则表达式javascript前端
正则表达式捕获组详解:从入门到掌握1.什么是捕获组(CaptureGroup)?捕获组是正则表达式中用于==捕获子匹配内容==的语法,通过()包裹的部分会被单独记录。它是处理复杂文本匹配时最常用的功能之一。关键特性提取子内容:从完整匹配中分离出特定部分索引编号:从左到右按(出现的顺序分配编号(从1开始)复用匹配:可在同个正则表达式中反向引用2.基础语法与示例2.1简单捕获组cons
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- Hive之正则表达式RLIKE详解及示例
三生暮雨渡瀟瀟
hivehive正则表达式
目录一、RLIKE语法及核心特性1.基本语法2.核心特性二、常见业务场景及示例场景1:过滤包含特定模式的日志(如错误日志)场景2:验证字段格式(如邮箱、手机号)场景3:提取复杂文本中的关键词场景4:排除无效数据(如非数字字符)三、高级用法与技巧1.忽略大小写匹配2.匹配多行文本3.组合多个条件四、性能优化建议1.避免全表扫描2.预编译正则模式3.简化正则表达式五、常见问题与注意事项1.转义字符问题
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比