- 数据结构与算法:动态规划dp:理论基础和相关力扣题(509.斐波那契数列、70.爬楼梯、62. 不同路径、63.不同路径Ⅱ、343.整数拆分)
shanshandeisu
数据结构与算法LeetCode动态规划leetcode算法dp力扣数据结构
1.0.理论基础动态规划主要解决的问题种类有:背包问题打家劫舍股票问题子序列问题解决步骤:dp数组及其下标的意义递推公式dp数组初始化遍历顺序打印dp数组2.0.相关力扣题509.斐波那契数列classSolution:deffib(self,n:int)->int:ifn==0:return0ifn==1:return1dp=[0]*35dp[1]=1foriinrange(2,31):dp[i
- 1.21学习总结
2401_89561082
学习
今天不知道点到什么把codeblock给玩死了,试图抢救,但是抢救无效,只好删了重下,终于让他变成了记忆中的模样。在博客上看了背包问题详解,不是很理解,题目也没能做出来。P1387:最大正方形b[i][j]表示以节点i,j为右下角,可构成的最大正方形的边长。只有a[i][j]==1时,节点i,j才能作为正方形的右下角;对于一个已经确定的b[i][j]=x,它表明包括节点i,j在内向上x个节点,向左
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 蓝桥杯备赛笔记(十) 背包问题
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记职场和发展
(1)背包模型有一个体积为V的背包,商店有n个物品,每个物品有一个价值v和体积w,每个物品只能被拿一次,问能够装下物品的最大价值。这里每一种物品只有两种状态,即“拿”或“不拿”。设状态dp[i][j]表示到第i个物品为止,拿的物品总体积为j的情况下的最大价值。转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)如果不拿物品i,那么最大价值就是dp[i-1][j
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 算法设计与分析第一章课后作业
小毛头~
算法
第一章一.单选题1【单选题】子程序(包括函数和方法)是用来被调用的,递归指的是A、不同子程序之间直接或间接调用的程序设计方法B、同一个子程序直接或间接调用自己的程序设计方法C、子程序向调用它的程序段返回结果的程序设计方法D、子程序不向调用它的程序段返回结果的程序设计方法正确答案:B我的答案:B得分:4.0分2【单选题】背包问题:n个物品和1个背包。对物品i,其价值为vi,重量为wi,背包的容量为W
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 第十三届蓝桥杯b组国赛dp问题
鱼香rose__
#蓝桥杯#动态规划蓝桥杯算法c++
第十三届蓝桥杯b组国赛dp问题\Huge{第十三届蓝桥杯b组国赛dp问题}第十三届蓝桥杯b组国赛dp问题刷题的时候发现往年国赛题中有三道dp问题,而且还都是背包问题,正好最近没写过dp,那就简单整理一下,尽量把我思路整理清楚hhh。关于背包问题,可以查看这篇博客:背包九讲——九种背包问题的算法思路+代码分析-CSDN博客题目链接:备赛蓝桥杯-蓝桥云课(lanqiao.cn)文章目录2022题意思路
- ACM刷题——背包问题
Nancy_627
ACM刷题acm竞赛算法
ACM刷题练习——背包问题01背包问题(Java解法)有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一
- 蓝桥杯刷题第二天——背包问题
XAX520_1314
蓝桥杯蓝桥杯职场和发展python
题目描述有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是Vi价值是Wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数,W,用空格隔开,分别表示第件物品的体积和价值。输出格式输出一个整数,表示最大价值。数据范围0=v:dp[i][j]=
- Python算法L5:贪心算法
小熊同学哦
Python算法算法python贪心算法
Python贪心算法简介目录Python贪心算法简介贪心算法的基本步骤贪心算法的适用场景经典贪心算法问题1.**零钱兑换问题**2.**区间调度问题**3.**背包问题**贪心算法的优缺点优点:缺点:结语贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取当前最优或最优解的算法。它的核心思想是,在保证每一步局部最优的情况下,希望通过贪心选择达到全局最优解。虽然贪心算法并不总能得到全
- 2024年CSP-J初赛备考建议
再临TSC
c++杂谈c++学习
针对2024年CSP-J(ComputerSciencePrinciplesJunior,即计算机科学原理初级认证)的备考,首先,先来看考试可能考的东西:动规(包括背包问题),主要在程序阅读还有程序补全题考,这方面,了解动规的原理就可以轻松拿分高精,也是在阅读和补全题,了解原理即可,Z2~Z3应该就学高精了深搜广搜,基础题可能会给你一个片段,然后问你这是什么算法,或者,问你下列选项中哪个正确,给你
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- HDU - 1398 完全背包问题求方案数
tran_sient
算法以及模板完全背包求方案数
题目描述:ProblemDescriptionPeopleinSilverlandusesquarecoins.Notonlytheyhavesquareshapesbutalsotheirvaluesaresquarenumbers.Coinswithvaluesofallsquarenumbersupto289(=17^2),i.e.,1-creditcoins,4-creditcoins,9
- AcWing 532. 货币系统 多重背包问题的变形
罚时大师月色
算法提高课
AcWing532.货币系统在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1…n] 的货币系统记作 (n,a)。在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。然而,在网
- 动态规划算法之背包问题详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划
动态规划中的背包问题(KnapsackProblem)是经典问题之一,通常用来解决选择一组物品放入背包使得背包的价值最大化的问题。根据问题条件的不同,背包问题有很多种变体,如0-1背包问题、完全背包问题、多重背包问题等。这里,我们详细介绍最经典的0-1背包问题,并提供代码的详细解读。1.0-1背包问题简介在0-1背包问题中,有一个容量为C的背包和n件物品。每件物品有两个属性:重量w[i]和价值v[
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 个人关于背包问题的总结(一)
Saber—Lily
背包问题总结笔记
一.前言背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解,二.01背包问题理解以及常见的例题1.01背包的分析以及理解动态规划(dp)问题的一般求解步骤概括如下1.
- 动态规划:一和零题目分析
小希与阿树
动态规划算法
法一:三维dp数组(容易理解,但空间复杂度较高)本题的含义是从strs数组中选取子集,使其子集的个数最大,限制条件是所有子集中0和1的个数总和有要求,因此可以转化为01背包问题,从字符串数组中任取子集(每个元素只能取一次),限制条件是所取子集数组的0和1的个数总和。确定dp数组及其下标含义:dp[i][j][k]表示从下标0~i的字符串数组中任取字符串放入背包含有j个0和k个1的字符串个数,其中d
- C++---背包模型---潜水员(每日一道算法2023.3.13)
SRestia
算法算法c++动态规划
注意事项:本题是"动态规划—01背包"和"背包模型—二维费用的背包问题"的扩展题,优化思路不多赘述,dp思路会稍有不同,下面详细讲解。题目:潜水员为了潜水要使用特殊的装备。他有一个带2种气体的气缸:一个为氧气,一个为氮气。让潜水员下潜的深度需要各种数量的氧和氮。潜水员有一定数量的气缸。每个气缸都有重量和气体容量。潜水员为了完成他的工作需要特定数量的氧和氮。他完成工作所需气缸的总重的最低限度的是多少
- 常见的算法底层思想
qinbaby
算法
1.分治法思想:将一个大问题分解成若干个规模较小的相同问题,递归求解子问题,最后合并子问题的解得到原问题的解。例子:快速排序、归并排序、二分查找。2.动态规划思想:将原问题分解为若干个相互重叠的子问题,通过解决子问题来构建原问题的解,并存储子问题的解以避免重复计算。例子:斐波那契数列、最长公共子序列、背包问题。3.贪心算法思想:在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全
- 416.分割等和子集
纯白色的少云
动态规划
416.分割等和子集给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。思路回溯是一种解法,但是会超时。另一种将其转换成背包问题,nums数
- 使用Python计算平面多边形间最短距离,数据需要从exce
Buoluochuixue
java
使用Python计算平面多边形间最短距离,数据需要从exce使用Python计算平面多边形间最短距离,数据需要从excel表格中导入,*多边形种类包括(圆形、矩形、六边形、五边形、跑道形/胶囊形),*Python代码题解|#[SCOI2009]粉刷匠#//分组背包问题,首先考虑一个木板的情况://对于一个木板而言:dp[i][j],i表示当前是第i次粉刷,粉刷第j块格子的情况。//那么得到状态转移
- 0-1背包问题
能力越小责任越小YA
算法算法动态规划c++
问题描述:N种物品,每种物品只有1个,每个物品有自己的重量和价值,有一个最多只能放重量为M的背包。问:这个背包最多能装价值为多少的物品?二维dp数组解法:dp数组的含义:dp[i][j]表示下标为0-i(物品的编号)之间的物品任取,放进容量为j的背包里的最大价值;递推公式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);初始化:dp[i
- 完全背包&多重背包问题(动态规划)
能力越小责任越小YA
算法算法动态规划c++
完全背包问题:每个物品使用次数没有限制,与0-1背包的不同之处在于遍历背包的顺序是正序。#includeusingnamespacestd;intmain(){intn,v;cin>>n>>v;vectorweight(n),values(n),dp(v+1,0);//dp[j]:容量为j的背包的最大价值for(inti=0;i>weight[i]>>values[i];}for(inti=0;i
- acwing完全背包问题
CodeWizard~
算法深度优先图论c++数据结构
acwing完全背包问题题目:有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。
- [题解-华为机试] 购物单
初梦语雪
算法题#动态规划华为算法
购物单解题思路较为抽象的01背包问题,#include#includeusingnamespacestd;intmain(){intN,m;cin>>N>>m;intvalue,priority,q;inti,j;vector>data(m+1,vector(6,0));for(i=1;i>value>>priority>>q;//是主件if(q==0){data[i][0]=value;data
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj