题意:D代表破坏村庄,R代表修复最后被破坏的那个村庄,Q代表询问包括x在内的最大连续区间是多少
思路:代码中的注释已经比较详细了,所以不多解释什么,在线段树的区间内,我们要用三个变量记录左边连续区间,右边连续区间和最大连续区间
#include
#include
#include
#include
#include
using namespace std;
const int maxn = 50000+10;
int n,m;
int s[maxn],top;//s为模拟栈
struct node
{
int l,r;
int ls,rs,ms;//ls,左端最大连续区间,rs右端最大连续区间,ms区间内最大连续区间
} a[maxn<<2];
void init(int l,int r,int i)
{
a[i].l = l;
a[i].r = r;
a[i].ls = a[i].rs = a[i].ms = r-l+1;
if(l!=r)
{
int mid = (l+r)>>1;
init(l,mid,i*2);
init(mid+1,r,2*i+1);
}
}
void insert(int i,int t,int x)
{
if(a[i].l == a[i].r)
{
if(x==1)
a[i].ls = a[i].rs = a[i].ms = 1;//修复
else
a[i].ls = a[i].rs = a[i].ms = 0;//破坏
return ;
}
int mid = (a[i].l+a[i].r)>>1;
if(t<=mid)
insert(2*i,t,x);
else
insert(2*i+1,t,x);
a[i].ls = a[2*i].ls;//左区间
a[i].rs = a[2*i+1].rs;//右区间
a[i].ms = max(max(a[2*i].ms,a[2*i+1].ms),a[2*i].rs+a[2*i+1].ls);//父亲区间内的最大区间必定是,左子树最大区间,右子树最大区间,左右子树合并的中间区间,三者中最大的区间值
if(a[2*i].ls == a[2*i].r-a[2*i].l+1)//左子树区间满了的话,父亲左区间要加上右孩子的左区间
a[i].ls += a[2*i+1].ls;
if(a[2*i+1].rs == a[2*i+1].r-a[2*i+1].l+1)//同理
a[i].rs += a[2*i].rs;
}
int query(int i,int t)
{
if(a[i].l == a[i].r || a[i].ms == 0 || a[i].ms == a[i].r-a[i].l+1)//到了叶子节点或者该访问区间为空或者已满都不必要往下走了
return a[i].ms;
int mid = (a[i].l+a[i].r)>>1;
if(t<=mid)
{
if(t>=a[2*i].r-a[2*i].rs+1)//因为t<=mid,看左子树,a[2*i].r-a[2*i].rs+1代表左子树右边连续区间的左边界值,如果t在左子树的右区间内,则要看右子树的左区间有多长并返回
return query(2*i,t)+query(2*i+1,mid+1);
else
return query(2*i,t);//如果不在左子树的右边界区间内,则只需要看左子树
}
else
{
if(t<=a[2*i+1].l+a[2*i+1].ls-1)//同理
return query(2*i+1,t)+query(2*i,mid);
else
return query(2*i+1,t);
}
}
int main()
{
int i,j,x;
char ch[2];
while(~scanf("%d%d",&n,&m))
{
top = 0;
init(1,n,1);
while(m--)
{
scanf("%s",ch);
if(ch[0] == 'D')
{
scanf("%d",&x);
s[top++] = x;
insert(1,x,0);
}
else if(ch[0] == 'Q')
{
scanf("%d",&x);
printf("%d\n",query(1,x));
}
else
{
if(x>0)
{
x = s[--top];
insert(1,x,1);
}
}
}
}
return 0;
}