折半查找算法
算法思想:
将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分。通过一次比较,将查找区间缩小一半。
折半查找是一种高效的查找方法。它可以明显减少比较次数,提高查找效率。但是,折半查找的先决条件是查找表中的数据元素必须有序。
算法步骤描述:
step1 首先确定整个查找区间的中间位置
mid = ( left + right )/ 2
step2 用待查关键字值与中间位置的关键字值进行比较;
若相等,则查找成功
若大于,则在后(右)半个区域继续进行折半查找
若小于,则在前(左)半个区域继续进行折半查找
Step3 对确定的缩小区域再按折半公式,重复上述步骤。最后,得到结果:要么查找成功, 要么查找失败。
折半查找的存储结构采用一维数组存放。
折半查找算法举例
对给定数列(有序){ 3,5,11,17,21,23,28,30,32,50},按折半查找算法,查找关键字值为30的数据元素。
折半查找的算法讨论:
优点: ASL≤log2n,即每经过一次比较,查找范围就缩小一半。经log2n 次计较就可以完成查找过程。
缺点:因要求有序,所以要求查找数列必须有序,而对所有数据元素按大小排序是非常费时的操作。另外,顺序存储结构的插入、删除操作不便利。
考虑:能否通过一次比较抛弃更多的部分(即经过一次比较,使查找范围缩得更小),以达到提高效率的目的。……?
可以考虑把两种方法(顺序查找和折半查找)结合起来,即取顺序查找简单和折半查找高效之所长,来达到提高效率的目的?实际上这就是分块查找的算法思想。
例如:[[[问题]]分析] 由于数据按升序排列,故用折半查找最快捷.
program binsearch;
const max=10;
var num:array[1..max] of integer;
i,n:integer;
procedure search(x,a,b:integer);
var mid:integer;
begin
if a=b then
if x=num[a] then writeln('Found:',a) else writeln('Number not found')
else begin
mid:=(a+b) div 2;
if x>num[mid] then search(x,mid,b);
if x
if x=num[mid] then writeln('Found:',mid);
end;
end;
begin
write('Please input 10 numbers in order:');
for i:=1 to max do read(num[i]);
write('Please input the number to search:');
readln(n);
search(n,1,max);
end.
分块查找
来自 维客
Jump to: navigation, search
分块查找又称索引顺序查找,它是顺序查找的一种改进方法。
方法描述:将n个数据元素"按块有序"划分为m块(m ≤ n)。每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。
操作步骤:
step1 先选取各块中的最大关键字构成一个索引表;
step2 查找分两个部分:先对索引表进行二分查找或
顺序查找,以确定待查记录在哪一块中;
然后,在已确定的块中用顺序法进行查找。