1.[Platform bus]-(对platform_get_resource的理解)[转]

转自:https://www.cnblogs.com/sky-heaven/p/4800848.html。

在linux使用platform_driver_register() 注册 platform_driver 时, 需要在 platform_driver 的probe() 里面知道设备的中断号, 内存地址等资源。

这些资源的描述信息存放在 resource 数据结构中, 相同的资源存放在一个树形树形数据结构中, 通过父节点, 兄弟节点, 子节点相连。 比如中断资源, IO端口资源, IO内存资源, DMA资源有不同资源树。

Linux使用 struct resource 来描述一个resouce

struct resource {
    resource_size_t start;      //资源范围的开始
    resource_size_t end;        //资源范围的结束
    const char *name;   //资源拥有者名
    unsigned long flags; //资源属性标识
    struct resource *parent, *sibling, *child;  //资源树的父节点, 兄弟节点, 字节点指针
};

resource_size_t 由系统决定 为uint32_t 或uint64_t 。

在platform机制里, 使用platform_get_resource()来获取指定的资源类型。

比如获取想获取中断号,

    irq = platform_get_irq(pdev, 0);
 
int platform_get_irq(struct platform_device *dev, unsigned int num) 
{
    struct resource *r = platform_get_resource(dev, IORESOURCE_IRQ, num);
 
    return r ? r->start : -ENXIO;
}
EXPORT_SYMBOL_GPL(platform_get_irq);    
             

platform_get_irq() 会返回一个start, 即可用的中断号。

之后便可使用request_irq() 来注册中断服务函数。

再比如想要获取IO内存资源:

struct resource *res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);

即可得到一个IO内存资源节点指针, 包括了地址的开始,结束地址等, 该IO内存的长度可用 resource_size() 来获取, 但这段资源只是一个描述, 想真正使用这段IO内存, 还要经过先申请, 再映射的过程。例如可使用devm_request_mem_region()申请出使用这段IO内存, 再使用ioremap() 将其映射出来, 供用户空间使用。

devm_request_mem_region(&pdev->dev, res_mem->start, resource_size(res_mem),
                    res_mem->name))

addr_start = ioremap(res_mem->start, resource_size(res_mem));

ioremap() 的返回值即为该资源的虚拟地址。

IO内存的资源是在设备树源(Device Tree Source)文件(以.dts结尾)里给出的,.dts文件就是用来描述目标板硬件信息的, 在uboot启动后, 使用uboot提供的特定API将其获取出来, 如fdt_getprop(), fdt_path_offset(), 这些API包含在uboot 的头文件 里面。

uboot将.dts文件里的描述解析出来, 再对相应寄存器赋值, 在linux启动后, 使用 platform_get_resource() 即可获取到这些给定的资源, 在驱动里使用。

例如一个在.dts文件中关于gpio资源的描述:

  gpio: gpio-controller@1070000000800 {
            #gpio-cells = <2>;
            compatible = "cavium,octeon-3860-gpio";
            reg = <0x10700 0x00000800 0x0 0x100>;

            gpio-controller;

根据其描述, 可知道gpio控制器的IO内存起始地址为:0x107900000800, 长度为0x100.

即从 0x107900000800 到 0x1079000008ff.

在目标板里使用 cat /proc/iomem 可以看到:

1070000000800-10700000008ff : /soc@0/gpio-controller@1070000000800

关于i2c 的描述:

        twsi0: i2c@1180000001000 {
            #address-cells = <1>;
            #size-cells = <0>;
            compatible = "cavium,octeon-3860-twsi";
            reg = <0x11800 0x00001000 0x0 0x200>;

            interrupts = <0 45>;
            clock-rate = <100000>;

IO内存起始地址为: 0x118000001000, 长度为0x200.

从 0x118000001000 到 0x1180000011ff.

在目标板里使用 cat /proc/iomem 可以看到:

1180000001000-11800000011ff : /soc@0/i2c@1180000001000

=====================================================================================

=====================================================================================

platform_get_resource函数源码如下:

struct resource *platform_get_resource(struct platform_device *dev,

                                   unsigned int type, unsigned int num)
{

       int i;

 

       for (i = 0; i < dev->num_resources; i++) {

              struct resource *r = &dev->resource[i];

 

              if (type == resource_type(r) && num-- == 0)

                     return r;

       }

       return NULL;

}

函数分析:

struct resource *r = &dev->resource[i];

这行代码使得不管你是想获取哪一份资源都从第一份资源开始搜索。


if (type == resource_type(r) && num-- == 0)

这行代码首先通过type == resource_type®判断当前这份资源的类型是否匹配,如果匹配则再通过num-- == 0判断是否是你要的,如果不匹配重新提取下一份资源而不会执行num-- == 0这一句代码。

通过以上两步就能定位到你要找的资源了,接着把资源返回即可。如果都不匹配就返回NULL。

实例分析:

下面通过一个例子来看看它是如何拿到设备资源的。

设备资源如下:

static struct resource s3c_buttons_resource[] = {

       [0]={

              .start = S3C24XX_PA_GPIO,

              .end   = S3C24XX_PA_GPIO + S3C24XX_SZ_GPIO - 1,

              .flags = IORESOURCE_MEM,

       },

       [1]={

              .start = IRQ_EINT8,

              .end   = IRQ_EINT8,

              .flags = IORESOURCE_IRQ,

       },

       [2]={

              .start = IRQ_EINT11,

              .end   = IRQ_EINT11,

              .flags = IORESOURCE_IRQ,

       },

       [3]={

              .start = IRQ_EINT13,

              .end   = IRQ_EINT13,

              .flags = IORESOURCE_IRQ,

       },

       [4]={

              .start = IRQ_EINT14,

              .end   = IRQ_EINT14,

              .flags = IORESOURCE_IRQ,

       },

       [5]={

              .start = IRQ_EINT15,

              .end   = IRQ_EINT15,

              .flags = IORESOURCE_IRQ,

       },

       [6]={

              .start = IRQ_EINT19,

              .end   = IRQ_EINT19,

              .flags = IORESOURCE_IRQ,

       }

};

驱动中通过下面代码拿到第一份资源:


struct resource *res;

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

函数进入for里面,i=0,num_resources=7,拿出resource[0]资源。resource_type®提取出该份资源 的资源类型并与函数传递下来的资源类型进行比较,匹配。Num=0(这里先判断是否等于0再自减1)符合要求,从而返回该资源。

获取剩下资源的代码如下:

for(i=0; i<6; i++){

              buttons_irq = platform_get_resource(pdev,IORESOURCE_IRQ,i);

             if(buttons_irq == NULL){

                  dev_err(dev,"no irq resource specified\n");

                   ret = -ENOENT;

                   goto err_map;

              }

              button_irqs[i] = buttons_irq->start; 

}

分析如下:

For第一次循环:

buttons_irq = platform_get_resource(pdev,IORESOURCE_IRQ,0);

在拿出第一份资源进行resource_type®判断资源类型时不符合(此时num-- == 0这句没有执行),进而拿出第二份资源,此时i=1,num_resources=7,num传递下来为0,资源类型判断时候匹配,num也等于0,从而确定资源并返回。

For第二次循环:

buttons_irq = platform_get_resource(pdev,IORESOURCE_IRQ,1);

拿出第二份资源的时候resource_type®资源类型匹配,但是num传递下来时候为1,执行num-- == 0时不符合(但num开始自减1,这导致拿出第三份资源时num==0),只好拿出第三份资源。剩下的以此类推。

总结:

struct resource *platform_get_resource(struct platform_device *dev,

                                   unsigned int type, unsigned int num)

unsigned int type决定资源的类型,unsigned int num决定type类型的第几份资源(从0开始)。即使同类型资源在资源数组中不是连续排放也可以定位得到该资源。

比如第一份IORESOURCE_IRQ类型资源在resource[2],而第二份在resource[5],那

platform_get_resource(pdev,IORESOURCE_IRQ,0);

可以定位第一份IORESOURCE_IRQ资源;

你可能感兴趣的:(8.Platform,Bus)