Networking
Description
You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area.
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.
Input
The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line.
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i.
Output
For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.
Sample Input
1 0
2 3
1 2 37
2 1 17
1 2 68
3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32
5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12
0
Sample Output
0
17
16
26
Source
Southeastern Europe 2002
分析:题目大意是找到联通所有节点且具有最小路径和的方案,并返回最小路径和,归根结底,这又是一道最小生成树的问题。Prim最小生成树算法是一个很好的选择。
在代码实现时,由于同样的路径具有多种不同的权重,因此,需要存储具体两节点间的最小路径权重,Prim算法的基本思想是:先找出整个网络中,具有最小节点路径的两个点,构成一个包,这后不断从网络中向这个保重加入节点,知道所有网络中的节点都加入该包为止。在将节点加入包时,始终选择当前网络中到包距离最近的节点加入。
代码实现:
#include
#include "iostream"
using namespace std;
#define N 51
int itg[N][N];
int PrimTree( int P )
{
bool bflag[N];
int res = 0;
int i, j, k, imin, index[2];
memset( bflag, false, sizeof(bool)*N );
//initilize
imin = 1000;
if(P > 1)
{
for(i = 1; i <= P; i++)
{
for(j = i+1; j <= P; j++)
{
if( itg[i][j] != 0 && imin > itg[i][j] )
{
imin = itg[i][j];
index[0] = i;
index[1] = j;
}
}
}
res += imin;
bflag[index[0]] = true;
bflag[index[1]] = true;
}
k = 2;
while(k++ < P)
{
imin = 1000;
for(i = 1; i <= P; i++)
{
if(bflag[i])
{
for(j = 1; j <= P; j++)
{
if( !bflag[j] && itg[i][j] != 0 && imin > itg[i][j] )
{
imin = itg[i][j];
index[1] = j;
}
}
}
}
res += imin;
bflag[index[1]] = true;
}
return res;
}
int main(void)
{
int P, R;
int i, iR, itemp, ibegin, iend, ivalue;
cin >> P;
while(P != 0)
{
cin >> R;
for(i = 0; i < N; i++)
memset(itg[i], 0, sizeof(int)*N);
iR = 0;
for(i = 0; i < R; i++)
{
cin >> ibegin >> iend >> ivalue;
if(ibegin > iend)
{
itemp = ibegin;
ibegin = iend;
iend = itemp;
}
if(itg[ibegin][iend] == 0 || ( itg[ibegin][iend] != 0 && itg[ibegin][iend] > ivalue ) )
itg[ibegin][iend] = ivalue;
itg[iend][ibegin] = itg[ibegin][iend];
}
cout << PrimTree(P) << endl;
cin >> P;
}
return 0;
}
提交结果:
Problem: 1287 |
|
User: uestcshe |
Memory: 248K |
|
Time: 94MS |
Language: C++ |
|
Result: Accepted |