字典树——实现搜索引擎的搜索关键词提示功能

搜索引擎的搜索关键词提示功能,我想你应该不陌生吧?为了方便快速输入,当你在搜索引擎的搜索框中,输入要搜索的文字的某一部分的时候,搜索引擎就会自动弹出下拉框,里面是各种关键词提示。你可以直接从下拉框中选择你要搜索的东西,而不用把所有内容都输入进去,一定程度上节省了我们的搜索时间。
字典树——实现搜索引擎的搜索关键词提示功能_第1张图片
尽管这个功能我们几乎天天在用,作为一名工程师,你是否思考过,它是怎么实现的呢?它底层使用的是哪种数据结构和算法呢?像 Google、百度这样的搜索引擎,它们的关键词提示功能非常全面和精准,肯定做了很多优化,但万变不离其宗,底层最基本的原理就是Trie 树。

1.什么是Trie树?

Trie 树,也叫“字典树”。顾名思义,它是一个树形结构。它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。
当然,这样一个问题可以有多种解决方法,比如散列表、红黑树,或者我们前面几节讲到的一些字符串匹配算法,但是,Trie 树在这个问题的解决上,有它特有的优点。不仅如此,Trie 树能解决的问题也不限于此,我们一会儿慢慢分析。
现在,我们先来看下,Trie 树到底长什么样子。
我举个简单的例子来说明一下。我们有 6 个字符串,它们分别是:how,hi,her,hello,so,see。我们希望在里面多次查找某个字符串是否存在。如果每次查找,都是拿要查找的字符串跟这 6 个字符串依次进行字符串匹配,那效率就比较低,有没有更高效的方法呢?
这个时候,我们就可以先对这 6 个字符串做一下预处理,组织成 Trie 树的结构,之后每次查找,都是在 Trie 树中进行匹配查找。Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起。最后构造出来的就是下面这个图中的样子。
字典树——实现搜索引擎的搜索关键词提示功能_第2张图片
其中,根节点不包含任何信息。每个节点表示一个字符串中的字符,从根节点到红色节点的一条路径表示一个字符串(注意:红色节点并不都是叶子节点)。为了让你更容易理解 Trie 树是怎么构造出来的,我画了一个 Trie 树构造的分解过程。构造过程的每一步,都相当于往 Trie 树中插入一个字符串。当所有字符串都插入完成之后,Trie 树就构造好了。
字典树——实现搜索引擎的搜索关键词提示功能_第3张图片
字典树——实现搜索引擎的搜索关键词提示功能_第4张图片
当我们在 Trie 树中查找一个字符串的时候,比如查找字符串“her”,那我们将要查找的字符串分割成单个的字符 h,e,r,然后从 Trie 树的根节点开始匹配。如图所示,绿色的路径就是在 Trie 树中匹配的路径。
字典树——实现搜索引擎的搜索关键词提示功能_第5张图片
如果我们要查找的是字符串“he”呢?我们还用上面同样的方法,从根节点开始,沿着某条路径来匹配,如图所示,绿色的路径,是字符串“he”匹配的路径。但是,路径的最后一个节点“e”并不是红色的。也就是说,“he”是某个字符串的前缀子串,但并不能完全匹配任何字符串。
字典树——实现搜索引擎的搜索关键词提示功能_第6张图片

2.如何实现一棵Trie树?

从刚刚 Trie 树的介绍来看,Trie 树主要有两个操作,一个是将字符串集合构造成 Trie 树。这个过程分解开来的话,就是一个将字符串插入到 Trie 树的过程。另一个是在 Trie 树中查询一个字符串。
了解了 Trie 树的两个主要操作之后,我们再来看下,如何存储一个 Trie 树?
从前面的图中,我们可以看出,Trie 树是一个多叉树。我们知道,二叉树中,一个节点的左右子节点是通过两个指针来存储的,如下所示 Java 代码。那对于多叉树来说,我们怎么存储一个节点的所有子节点的指针呢?

class BinaryTreeNode{//二叉树节点
	char data;
	BinaryTreeNode left;
	BinaryTreeNode right;
}

我先介绍其中一种存储方式,也是经典的存储方式,大部分数据结构和算法书籍中都是这么讲的。还记得我们前面讲到的散列表吗?借助散列表的思想,我们通过一个下标与字符一一映射的数组,来存储子节点的指针。这句话稍微有点抽象,不怎么好懂,我画了一张图你可以看看。
字典树——实现搜索引擎的搜索关键词提示功能_第7张图片
假设我们的字符串中只有从 a 到 z 这 26 个小写字母,我们在数组中下标为 0 的位置,存储指向子节点 a 的指针,下标为 1 的位置存储指向子节点 b 的指针,以此类推,下标为 25 的位置,存储的是指向的子节点 z 的指针。如果某个字符的子节点不存在,我们就在对应的下标的位置存储 null。即每个节点都维持着一个大小为26的数组用于存储其子节点的指针地址
我们在 Trie 树中查找字符串的时候,我们就可以通过字符的 ASCII 码减去“a”的 ASCII 码,迅速找到匹配的子节点的指针。比如,d 的 ASCII 码减去 a 的 ASCII 码就是 3,那子节点 d 的指针就存储在数组中下标为 3 的位置中。
描述了这么多,有可能你还是有点懵,我把上面的描述翻译成了代码,你可以结合着一块看下,应该有助于你理解。

public class Trie {//字典树
	private TrieNode root=new TrieNode('/');//根节点存储无意义字符
	public void insert(char[] text){
		TrieNode p=root;
		for(int i=0;i<text.length;i++){
			int index=text[i]-'a';
			if(p.children[index]==null){
				TrieNode newNode=new TrieNode(text[i]);
				p.children[index]=newNode;
			}
			p=p.children[index];
		}
		p.isEndingChar=true;
	}
	public boolean find(char[] pattern){
		TrieNode p=root;
		for(int i=0;i<pattern.length;++i){
			int index=pattern[i]='a';
			if(p.children[index]==null){
				return false;
			}
			p=p.children[index];
		}
		if(p.isEndingChar==false){
			return false;
		}else return true;
	}
}
class TrieNode{
	public char data;
	public TrieNode[] children=new TrieNode[26];
	public boolean isEndingChar=false;
	public TrieNode(char data){
		this.data=data;
	}
}

3.Trie树的时间复杂度和空间复杂度分析

3.1 时间复杂度分析

如果要在一组字符串中,频繁地查询某些字符串,用 Trie 树会非常高效。构建 Trie 树的过程,需要扫描所有的字符串,时间复杂度是 O(n)(n 表示所有字符串的长度和)。但是一旦构建成功之后,后续的查询操作会非常高效。每次查询时,如果要查询的字符串长度是 k,那我们只需要比对大约 k 个节点,就能完成查询操作。跟原本那组字符串的长度和个数没有任何关系。所以说,构建好 Trie 树后,在其中查找字符串的时间复杂度是 O(k),k 表示要查找的字符串的长度。

3.2 空间复杂度分析

刚刚我们在讲 Trie 树的实现的时候,讲到用数组来存储一个节点的子节点的指针。如果字符串中包含从 a 到 z 这 26 个字符,那每个节点都要存储一个长度为 26 的数组,并且每个数组元素要存储一个 8 字节指针(或者是 4 字节,这个大小跟 CPU、操作系统、编译器等有关)。而且,即便一个节点只有很少的子节点,远小于 26 个,比如 3、4 个,我们也要维护一个长度为 26 的数组。
如果字符串中不仅包含小写字母,还包含大写字母、数字、甚至是中文,那需要的存储空间就更多了。所以,也就是说,在某些情况下,Trie 树不一定会节省存储空间。在重复的前缀并不多的情况下,Trie 树不但不能节省内存,还有可能会浪费更多的内存。
当然,我们不可否认,Trie 树尽管有可能很浪费内存,但是确实非常高效。那为了解决这个内存问题,我们是否有其他办法呢?
我们可以稍微牺牲一点查询的效率,将每个节点中的数组换成其他数据结构,来存储一个节点的子节点指针。用哪种数据结构呢?我们的选择其实有很多,比如有序数组、跳表、散列表、红黑树等。
假设我们用有序数组,数组中的指针按照所指向的子节点中的字符的大小顺序排列。查询的时候,我们可以通过二分查找的方法,快速查找到某个字符应该匹配的子节点的指针。但是,在往 Trie 树中插入一个字符串的时候,我们为了维护数组中数据的有序性,就会稍微慢了点。
实际上,Trie 树的变体有很多,都可以在一定程度上解决内存消耗的问题。比如,缩点优化,就是对只有一个子节点的节点,而且此节点不是一个串的结束节点,可以将此节点与子节点合并。这样可以节省空间,但却增加了编码难度。这里我就不展开详细讲解了,你如果感兴趣,可以自行研究下。
字典树——实现搜索引擎的搜索关键词提示功能_第8张图片

4.Trie树与散列表、红黑树的比较

实际上,字符串的匹配问题,笼统上讲,其实就是数据的查找问题。对于支持动态数据高效操作的数据结构,我们前面已经讲过好多了,比如散列表、红黑树、跳表等等。实际上,这些数据结构也可以实现在一组字符串中查找字符串的功能。我们选了两种数据结构,散列表和红黑树,跟 Trie 树比较一下,看看它们各自的优缺点和应用场景。
在刚刚讲的这个场景,在一组字符串中查找字符串,Trie 树实际上表现得并不好。它对要处理的字符串有及其严苛的要求。
第一,字符串中包含的字符集不能太大。我们前面讲到,如果字符集太大,那存储空间可能就会浪费很多。即便可以优化,但也要付出牺牲查询、插入效率的代价。
第二,要求字符串的前缀重合比较多,不然空间消耗会变大很多
第三,如果要用 Trie 树解决问题,那我们就要自己从零开始实现一个 Trie 树,还要保证没有 bug,这个在工程上是将简单问题复杂化,除非必须,一般不建议这样做。
第四,我们知道,通过指针串起来的数据块是不连续的,而 Trie 树中用到了指针,所以,对缓存并不友好,性能上会打个折扣。
综合这几点,针对在一组字符串中查找字符串的问题,我们在工程中,更倾向于用散列表或者红黑树。因为这两种数据结构,我们都不需要自己去实现,直接利用编程语言中提供的现成类库就行了。
讲到这里,你可能要疑惑了,讲了半天,我对 Trie 树一通否定,还让你用红黑树或者散列表,那 Trie 树是不是就没用了呢?是不是今天的内容就白学了呢?实际上,Trie 树只是不适合精确匹配查找,这种问题更适合用散列表或者红黑树来解决。Trie 树比较适合的是查找前缀匹配的字符串,也就是类似开篇问题的那种场景——即实现搜索引擎的搜索关键词提示功能

5.字典树的优化——AC自动机

很多支持用户发表文本内容的网站,比如 BBS,大都会有敏感词过滤功能,用来过滤掉用户输入的一些淫秽、反动、谩骂等内容。你有没有想过,这个功能是怎么实现的呢?
实际上,这些功能最基本的原理就是字符串匹配算法,也就是通过维护一个敏感词的字典,当用户输入一段文字内容之后,通过字符串匹配算法,来查找用户输入的这段文字,是否包含敏感词。如果有,就用“*XXX”把它替代掉。
我们前面讲过好几种字符串匹配算法了,它们都可以处理这个问题。但是,对于访问量巨大的网站来说,比如淘宝,用户每天的评论数有几亿、甚至几十亿。这时候,我们对敏感词过滤系统的性能要求就要很高。毕竟,我们也不想,用户输入内容之后,要等几秒才能发送出去吧?我们也不想,为了这个功能耗费过多的机器吧?那如何才能实现一个高性能的敏感词过滤系统呢?这就要用到今天的多模式串匹配算法
我们前面几节讲了好几种字符串匹配算法,有 BF 算法、RK 算法、BM 算法、KMP 算法,还有 Trie 树。前面四种算法都是单模式串匹配算法,只有 Trie 树是多模式串匹配算法。我说过,单模式串匹配算法,是在一个模式串和一个主串之间进行匹配,也就是说,在一个主串中查找一个模式串。多模式串匹配算法,就是在多个模式串和一个主串之间做匹配,也就是说,在一个主串中查找多个模式串。
尽管,单模式串匹配算法也能完成多模式串的匹配工作。例如开篇的思考题,我们可以针对每个敏感词,通过单模式串匹配算法(比如 KMP 算法)与用户输入的文字内容进行匹配。但是,这样做的话,每个匹配过程都需要扫描一遍用户输入的内容。整个过程下来就要扫描很多遍用户输入的内容。如果敏感词很多,比如几千个,并且用户输入的内容很长,假如有上千个字符,那我们就需要扫描几千遍这样的输入内容。很显然,这种处理思路比较低效。
与单模式匹配算法相比,多模式匹配算法在这个问题的处理上就很高效了。它只需要扫描一遍主串,就能在主串中一次性查找多个模式串是否存在,从而大大提高匹配效率。我们知道,Trie 树就是一种多模式串匹配算法。那如何用 Trie 树实现敏感词过滤功能呢?
我们可以对敏感词字典进行预处理,构建成 Trie 树结构。这个预处理的操作只需要做一次,如果敏感词字典动态更新了,比如删除、添加了一个敏感词,那我们只需要动态更新一下 Trie 树就可以了。
当用户输入一个文本内容后,我们把用户输入的内容作为主串,从第一个字符(假设是字符 C)开始,在 Trie 树中匹配。当匹配到 Trie 树的叶子节点,或者中途遇到不匹配字符的时候,我们将主串的开始匹配位置后移一位,也就是从字符 C 的下一个字符开始,重新在 Trie 树中匹配。基于 Trie 树的这种处理方法,有点类似单模式串匹配的 BF 算法。我们知道,单模式串匹配算法中,KMP 算法对 BF 算法进行改进,引入了 next 数组,让匹配失败时,尽可能将模式串往后多滑动几位。借鉴单模式串的优化改进方法,能否对多模式串 Trie 树进行改进,进一步提高 Trie 树的效率呢?这就要用到 AC 自动机算法了。
AC自动机的具体原理不需要掌握,我们只需要知道其应用与其和字典树的关系即可。

你可能感兴趣的:(数据结构与算法分析)