- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- 人工神经网络:单层神经网络(感知器)
一、神经网络介绍1、生物学起源与基本概念(1)生物神经网络启发人类大脑由约860亿个神经元组成,这些神经元通过突触相互连接,形成复杂网络。当外界刺激传入时,神经元会传递电信号并释放化学物质(神经递质),从而实现信息处理。人工神经网络正是模仿这一机制,通过数学模型构建“人工神经元”和“连接权重”。(2)人工神经网络的定义:由大量人工神经元(节点)相互连接构成的计算系统,通过调整节点间的连接权重来学习
- 深度学习——激活函数
笨小古
深度强化学习深度学习人工智能
深度学习——激活函数激活函数是人工是人工神经网络中一个关键的组成部分,它被设计用来引入非线性特性到神经网络模型中,使神经网络能够学习和逼近复杂的非线性映射关系。1.引入非线性能力没有激活函数的神经网络本质上只是线性变换的叠加,无论多少层也只能表示线性函数,能力有限。激活函数使网络可以逼近任意复杂函数(依据万能逼近定理)2.控制信息流动某些激活函数可以抑制部分神经元的输出(如ReLU),是模型更稀疏
- 第1天:认识RNN及RNN初步实验(预测下一个数字)
deflag
人工智能学习rnn人工智能深度学习
RNN(循环神经网络)是一种专门设计用来处理序列数据的人工神经网络。它的核心思想是能够“记住”之前处理过的信息,并将其用于当前的计算,这使得它非常适合处理具有时间顺序或上下文依赖关系的数据。核心概念:循环连接RNN与普通的前馈神经网络(如多层感知机)最根本的区别在于它引入了循环连接:输入序列:RNN接收一个序列作为输入,例如:一个句子(单词序列)一段语音(音频帧序列)股票价格(时间点上的价格序列)
- 动手学深度学习笔记1
a3040218
深度学习深度学习笔记人工智能
介绍定义:深度学习是一类基于人工神经网络的机器学习技术,通过构建具有多个层次的神经网络模型,让计算机自动从大量数据中学习特征和模式。它模拟人类大脑的神经元结构,通过大量神经元之间的相互连接和信息传递,实现对复杂数据的学习和理解。Tips:与传统机器学习的区别:传统机器学习通常需要人工手动设计特征,这依赖于领域专家的经验和知识,且设计的特征往往具有局限性。而深度学习能够自动从数据中学习到复杂的特征表
- AI 绘画工具原理揭秘:从文字到图像的魔法
JXY_AI
人工智能ai绘画
在当今数字化时代,AI绘画工具以其神奇的魔力,让人们只需输入简单的文字描述,就能瞬间生成精美的图像。这种从文字到图像的奇妙转换,仿佛为我们开启了一扇通往魔法世界的大门,极大地激发了创作者的灵感,降低了创作门槛,使艺术创作变得更加触手可及。今天,就让我们一同深入探索AI绘画工具背后的技术原理,揭开这层神秘的面纱。AI绘画的技术基石深度学习与神经网络AI绘画的核心技术之一是深度学习,它基于人工神经网络
- 基于simulink的神经网络控制策略的三相逆变器仿真
amy_mhd
神经网络人工智能深度学习
目录一、准备工作二、步骤详解1.启动Simulink并创建新模型2.构建三相逆变器基础模型3.设计神经网络控制器数据准备与预处理创建并训练神经网络4.集成神经网络控制器到Simulink模型5.增加示波器观察输出6.配置仿真参数7.运行仿真并分析结果示例代码片段神经网络控制(NeuralNetworkControl)是一种基于人工神经网络的智能控制方法,它能够通过学习系统的行为来实现对复杂非线性系
- 【深度学习】6. 卷积神经网络,CNN反向传播,感受野,池化变种,局部连接机制,可视化实例
pen-ai
深度学习机器学习深度学习cnn人工智能
卷积神经网络(ConvolutionalNeuralNetworks)一、卷积神经网络的历史发展Neocognitron(1980)由KunihikoFukushima提出,Neocognitron是最早模拟人类视觉皮层结构的人工神经网络架构。它具备层级结构与局部连接机制,可以实现位置不变性的图像识别,是现代CNN的雏形。LeNet-5(1998)YannLeCun等人提出了LeNet-5,这是第
- 一文搞懂神经网络:从原理到 Python 实战
-Student
神经网络python人工智能卷积神经网络机器学习深度学习大数据
一、神经网络的定义与分类1.1神经网络的基本概念人工神经网络(ArtificialNeuralNetwork,ANN)的设计灵感源于生物大脑中神经元的工作机制。在生物神经系统中,神经元是基本的信息处理单元,它通过树突接收来自其他神经元的信号,这些信号在细胞体中进行整合,当整合后的信号强度超过一定阈值时,神经元就会被激活,并通过轴突将信号传递给其他神经元。神经元之间通过突触相连,突触的强度决定了信号
- 简单神经网络(ANN)实现:从零开始构建第一个模型
赵青临的辉
深入人工智能:从基础到实战神经网络人工智能深度学习
本文将手把手带你用Python+Numpy实现一个最基础的人工神经网络(ArtificialNeuralNetwork,ANN)。不依赖任何深度学习框架,适合入门理解神经网络的本质。一、项目目标构建一个三层神经网络(输入层、隐藏层、输出层),用于解决一个简单的二分类任务,例如根据两个输入特征判断输出是0还是1。二、基本结构说明我们将构建如下结构的神经网络:复制编辑输入层(2个神经元)→隐藏层(4个
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 深入解析BP神经网络:从理论到实践
语文乌托邦
本文还有配套的精品资源,点击获取简介:BP神经网络是一种通过反向传播算法实现权重更新的人工神经网络模型,广泛应用于多种任务。本文献深入探讨了BP神经网络的结构、前向传播、激活函数、误差函数、反向传播算法、梯度下降、学习率、权重初始化、过拟合与正则化、早停策略、批量与随机梯度下降、学习率衰减、动量法与Adam优化器,以及训练集、验证集与测试集等关键概念。通过这些基础知识,读者将能够理解并应用BP神经
- 神经网络的概念和基本用法
大数据技术派
概率论与数理统计神经网络人工智能深度学习
什么是人工神经网络,我的理解就是:举个不太恰当的例子,当你训练你的狗时,第一次给它一个橘子,跟它说这是橘子;下一次再给它橘子,看它还认不认识,如果不认识,继续告诉他,直到狗可以认出橘子为止。那么下次你就可以给它拿一个香蕉,问它这是不是橘子,如果它说不是,说明它已经被训练的差不多了。我们来看一下官方定义:神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函
- python画sigmoid函数_基于Python的sigmoid函数FPGA实现
weixin_39624360
基于Python的sigmoid函数FPGA实现刘毅飞【摘要】sigmoid函数是人工神经网络中通常采用的传递函数,采用基于Python的软硬件协同设计方法,在FPGA上实现了定点sigmoid函数。实验结果表明采用基于Python的软硬件协同设计方法,可以利用Python上大量的包和模块从而大幅度提高系统设计、仿真和校验的效率,并且能将软件算法快速有效地转换为硬件实现,在整个软硬件设计过程中仅采
- 基于全连接神经网络的minist数据集分类
ʚɞ 短腿欧尼
神经网络人工智能全连接神经网络minist数据集
1.构建全连接神经网络全连接神经网络介绍:全连接神经网络(FullyConnectedNeuralNetwork,FCNN)是一种经典的人工神经网络结构,它将每个神经元与前一层的所有神经元相连,形成一个密集的网络。FCNN广泛应用于各种机器学习任务,例如图像分类、语音识别和自然语言处理等。结构包含:输入层:接收输入数据,例如图像像素值、文本向量等。隐藏层:由多个神经元组成,每个神经元都与前一层的所
- 多层感知机神经网络与损失函数 笔记
无敌的六边形狗勾战士
神经网络笔记人工智能
1.算法背景使用算法模拟人脑进行智能运算的结构与模型被称为神经网络。人工神经网络简称神经网络,是一种模拟生物神经网络的算法结构与模型。人工神经元主要使用函数来模拟神经元对信息的处理过程。在神经网络中,神经元不是单个出现的,一个神经元的输入可以来源于外界,也可以来源于上一个神经元。2.算法原理2.1神经元神经网络的基本的单位是神经元,每个神经元都有输入并产生单个输出。这个输出可以发射到多个其他的神经
- 深度学习应用
胡萝卜不甜
机器学习深度学习人工智能机器学习
1.深度学习概述1.1定义与发展深度学习是机器学习的一个子领域,它基于人工神经网络的学习算法,通过模拟人脑的神经网络结构来处理数据和创建模式。深度学习的发展可以追溯到20世纪40年代,但直到21世纪初,随着计算能力的提升和大数据的可用性,深度学习才开始取得显著的进展。定义:深度学习模型由多层的神经网络构成,每一层都包含多个神经元,这些神经元能够学习数据的复杂特征。深度学习模型能够自动从原始数据中提
- 诺奖现场采访2024物理学得主Hinton:当前AI革命堪比工业革命,且将在智力上全面超越人类
AIBigModel
人工智能
当地时间昨天,2024年10月8日,瑞典皇家科学院宣布将本年度诺贝尔物理学奖授予两位被誉为'AI教父'的科学家:约翰·J·霍普菲尔德(JohnJ.Hopfield)和杰弗里·E·辛顿(GeoffreyE.Hinton)。该奖项旨在表彰他们在使用人工神经网络进行机器学习方面的基础性发现和发明。在现场,发言人通过手机连线采访了杰弗里·辛顿教授。辛顿教授对人工智能的未来发展前景表示乐观,他指出:'人工智
- 大模型训练、多模态数据处理与融合
百度_开发者中心
人工智能大模型自然语言处理
人工智能(AI)领域近年来取得了显著的进步,其中大模型训练和多模态数据处理技术发挥了至关重要的作用。大模型是指具有巨大参数量和计算能力的人工神经网络模型,而多模态数据处理则是指在一个系统或模型中同时处理多种类型的数据,如文本、图像、音频等。一、大模型训练随着硬件和算法的进步,如GPT(GenerativePre-trainedTransformer)系列模型和BERT(BidirectionalE
- 深度学习3——神经网络与反向传播
DUTBenjamin
深度学习深度学习神经网络人工智能
一、多层感知机1.1单层感知机1943年,麦卡洛克和皮兹提出MCP模型,开启了人工神经网络的大门。该模型模拟人的神经元反应过程,对输入信号进行线性加权、求和后,再通过非线性激活(阈值法)输出。其数学表达式为:y=f(∑i=1nwixi+b)y=f\left(\sum_{i=1}^{n}w_{i}x_{i}+b\right)y=f(i=1∑nwixi+b)其中,xix_ixi是输入信号,wiw_iw
- 多层感知机(MLP)——深度学习
搬砖的阿wei
人工智能算法机器学习python深度学习计算机视觉
1.感知机1.1什么是感知机感知机是一种最简单的人工神经网络模型,它模拟了生物神经元的工作原理,基本结构是单个神经元,接收多个输入信号,将每个输入乘以对应的权重,求和后加上偏置,再经过一个激活函数处理输出结果。数学模型可以表示为:,其中是输入值,是权重,是偏置,是激活函数,常见的激活函数如修正线性单元(Rectifiedlinearunit,ReLU)。1.2感知机的局限性感知机只能处理线性可分的
- 数学建模SOM神经网络聚类
AI Dog
数学建模数学建模聚类深度学习SOM神经网络人工智能
数学建模中的SOM神经网络聚类自组织映射(Self-OrganizingMap,SOM)是一种无监督的人工神经网络,用于对高维数据进行降维和聚类分析。SOM通过模拟神经元的自组织行为,能够有效地将输入数据映射到一个低维的网格空间,并且保留数据的拓扑结构。SOM广泛应用于数据挖掘、模式识别、图像处理等领域。1.SOM神经网络概述自组织映射(SOM)是由TeuvoKohonen在1980年代提出的一种
- 基于人工神经网络的生物信息软件_[2020 Vol.193] SDMtoolbox:一种基于python的景观遗传、生物地理和物种分布模型分析地理信息系统工具包...
weixin_39855796
基于人工神经网络的生物信息软件空间分析建模目的
SDMtoolbox:apython-basedGIStoolkitforlandscapegenetic,biogeographicandspeciesdistributionmodelanalysesSDMtoolbox:一种基于python的景观遗传、生物地理和物种分布模型分析地理信息系统工具包JasonL.Brown*†DepartmentofBiology,DukeUniversity,
- 多层感知机(MLP)全面指南
MobiCetus
强化学习开发语言java算法c++pythoneclipsegithub
多层感知机(MLP)是一种人工神经网络,由多个神经元层组成。MLP中的神经元通常使用非线性激活函数,使得网络能够学习数据中的复杂模式。MLP在机器学习中非常重要,因为它能够学习数据中的非线性关系,使其成为分类、回归和模式识别等任务中的强大模型。神经网络基础神经网络或人工神经网络是机器学习中的基本工具,支持着许多最先进的算法和应用,广泛应用于计算机视觉、自然语言处理、机器人技术等领域。一个神经网络由
- 人工智能入门(1)
反方向的钟儿
人工智能人工智能nlp大数据云计算计算机视觉深度学习机器学习
人工智能导引文章目录人工智能导引artifiicialintelligence由图灵测试出发的六个领域贝叶斯方法分析成为大多数AI系统中不确定推理的现代方法基础研究方法机器学习计算机利用已经有的数据样本,得出某种规律模型,并利用模型预测未来的一种方法==回归算法==线性回归和逻辑回归神经网络ANN人工神经网络模型支持向量机SVM聚类计算机视觉自然语言处理NLP==群体智能==目前主要的两种方法是=
- 吴恩达深度学习复盘(1)神经网络与深度学习的发展
wgc2k
#深度学习深度学习人工智能
一、神经网络的起源与生物学动机灵感来源神经网络的最初动机源于对生物大脑的模仿。20世纪50年代,科学家试图通过软件模拟神经元的工作机制(如树突接收信号、轴突传递信号),构建类似人类大脑的信息处理系统。生物神经元的简化模型人工神经网络采用数学模型简化生物神经元的行为:每个神经元接收输入(数字信号),通过加权求和与激活函数处理后输出。尽管这一模型远不及真实大脑复杂,但早期研究认为其可能复现智能行为。二
- 物理学不存在了?诺贝尔物理学奖颁给了人工智能
资讯新鲜事
人工智能
2024年10月8日,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国普林斯顿大学教授约翰·J·霍普菲尔德(JohnJ.Hopfield)和加拿大多伦多大学教授杰弗里·E·辛顿(GeoffreyE.Hinton),以表彰他们“在人工神经网络机器学习方面的基础性发现和发明”。辛顿在接受电话采访时表示:“完全没想到”。实话实说,在结果出来前,大家也都没想到。因为在外界预测里,今年的诺贝尔物理学奖
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟