- 【人工智能】大话什么是神经网络
路上阳光
什么是人工智能?通俗来讲,就是让机器能像人一样思考。这个无需解释太多,因为通过各种科幻电影我们已经对人工智能很熟悉了。大家现在感兴趣的应该是——如何实现人工智能?从1956年夏季首次提出“人工智能”这一术语开始,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- AI领域常用缩写词
大道不孤,众行致远
技术杂谈人工智能
学习AI的最大收获是英文水平长了长,多认识了几个单词:人工智能(ArtificialIntelligence,AI)通用人工智能(ArtificialGeneralIntelligence,AGI)生成式AI(AIgeneratedcontent,AIGC)智能体(Agent)人工神经网络(ArtificialNeuralNetworks,ANN)卷积神经网络(ConvolutionalNeura
- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 人人都能懂的机器学习——用Keras搭建人工神经网络02
苏小菁在编程
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
- 143自然语言处理进阶手册--人工神经网络初探
Jachin111
人工神经网络初探神经网络与人类大脑人类虽然拥有智慧,但对智慧是如何产生的却不得而知,对于大脑结构的模仿或许是一个探索的起点,神经网络的起点就在这里。准确地说,这里所述的神经网络其实是人工神经网络,仅仅是模仿了人脑神经网络的部分结构特征与机理。在本小节,我们来对神经网络与人类大脑来作一番对比,比较两者的不同与联系。人类神经系统的基本单元是神经元,约有1000亿个,是一种高度分化的细胞。神经元能够接受
- 深度学习:探索人工智能的无限可能
木小梦(๑• . •๑)
人工智能深度学习
引言:在当今这个数字化时代,人工智能(AI)已经成为了一个热门话题。从自动驾驶汽车到智能助手,AI正在逐渐改变我们的生活方式。而在AI领域,深度学习是近年来发展最为迅速的一个分支。本文将深入探讨深度学习及其相关领域,包括计算机视觉、自然语言处理、神经网络和强化学习。1.深度学习深度学习是一种基于人工神经网络的机器学习方法,它试图模拟人脑的工作方式,通过训练大量数据来自动学习数据的内在规律和表示层次
- 人工神经网络通过调整,神经网络怎么调参数
小浣熊的技术
神经网络matlab算法
神经网络算法中,参数的设置或者调整,有什么方法可以采用若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用
- 《探秘神经网络:人工智能的强大引擎》
程序猿阿伟
人工智能神经网络深度学习
在当今科技飞速发展的时代,人工智能已经成为了热门话题,而神经网络作为人工智能的重要组成部分,正发挥着越来越关键的作用。那么,什么是神经网络呢?它在人工智能中又有哪些令人瞩目的应用呢?一、什么是神经网络神经网络,也被称为人工神经网络,是一种模仿生物神经网络结构和功能的计算模型。生物神经网络是由大量的神经元相互连接而成,通过电信号和化学信号进行信息传递和处理。人工神经网络则是由许多简单的处理单元(称为
- cnn卷积神经网络反向传播,卷积神经网络维度变化
阳阳2013哈哈
PHPcnn机器学习深度学习神经网络
卷积神经网络是如何反向调整参数的?卷积神经网络反向传播和bp有什么区别如何理解神经网络里面的反向传播算法反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 精读《深度学习 - 函数式之美》
可口可乐Vip
前端深度学习人工智能
1引言函数式语言在深度学习领域应用很广泛,因为函数式与深度学习模型的契合度很高,TheBeautyofFunctionalLanguagesinDeepLearning — ClojureandHaskell就很好的诠释了这个道理。通过这篇文章可以加深我们对深度学习与函数式编程的理解。2概述与精读深度学习是机器学习中基于人工神经网络模型的一个分支,通过模拟多层神经元的自编码神经网络,将特征逐步抽象
- 神经网络入门经典书籍,神经网络理论及应用
小浣熊的技术
神经网络人工智能深度学习算法
想要学习人工神经网络,需要什么样的基础知识?人工神经网络理论百度网盘下载:链接:提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。谷歌人工智能写作项目:神经网络伪原创
- 一张图读懂人工智能
UPUPUPEveryday
人工智能
一、生成人工智能的概念和应用,以及如何使用大型语言模型进行聊天和创造原创内容。这项技术将会对人类和企业产生深远影响。计算机获得学习、思考和交流的能力,被称为生成人工智能。生成人工智能可以立即获得人类所有知识的总和,并回答任何问题。大型语言模型是人工神经网络,可以处理任何类型的内容,如文本或图像。二、大型语言模型的训练过程和应用场景,包括文本到文本、图像到文本、语音转录等多个方面。同时也提到了不同模
- 深度学习图像算法工程师--面试准备(1)
小豆包的小朋友0217
深度学习算法人工智能
1请问人工神经网络中为什么ReLU要好过于tanh和Sigmoidfunction?采⽤Sigmoid等函数,算激活函数时(指数运算),计算量⼤,反向传播求误差梯度时,求导涉及除法和指数运算,计算量相对⼤,⽽采⽤ReLU激活函数,整个过程的计算量节省很多。对于深层⽹络,Sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在Sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信
- 机器学习入门--循环神经网络原理与实践
Dr.Cup
机器学习入门机器学习rnn深度学习
循环神经网络循环神经网络(RNN)是一种在序列数据上表现出色的人工神经网络。相比于传统前馈神经网络,RNN更加适合处理时间序列数据,如音频信号、自然语言和股票价格等。本文将介绍RNN的基本数学原理、使用PyTorch和Scikit-Learn数据集实现的代码。数学原理RNN是一种带有循环结构的神经网络,其在处理序列数据时将前一次的输出作为当前输入的一部分。这使得RNN能够记住先前的状态和信息,并且
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 【机器学习笔记】10 人工神经网络
RIKI_1
机器学习机器学习笔记人工智能
人工神经网络发展史1943年,心理学家McCulloch和逻辑学家Pitts建立神经网络的数学模型,MP模型每个神经元都可以抽象为一个圆圈,每个圆圈都附带特定的函数称之为激活函数,每两个神经元之间的连接的大小的加权值即为权重。1960年代,人工网络得到了进一步地发展感知机和自适应线性元件等被提出。M.Minsky仔细分析了以感知机为代表的神经网络的局限性,指出了感知机不能解决非线性问题,这极大影响
- 深度学习:开启人工智能的未来探索之旅
快乐非自愿
人工智能深度学习
科技的飞速发展使得人工智能(AI)成为当今科技领域的热点之一,其中,深度学习作为人工智能的关键技术,正逐渐成为推动AI发展的强大引擎。本文将深入探讨深度学习在人工智能未来发展中的关键作用,以及它如何推动人工智能技术的持续进步和广泛应用。深度学习的概念与原理深度学习是一种基于人工神经网络的机器学习方法,其核心理念是通过模拟人脑神经网络的多层次结构,实现对复杂数据的学习和分析。人工神经网络是一种模拟生
- 大致聊聊ChatGPT的底层原理,实现方法
黑马程序员官方
chatgpt人工智能机器学习
文目录深度学习基础ChatGPT的本质ChatGPT原理详解一、深度学习基础—深度学习是什么?如何理解神经网络结构?关于生物神经网络结构如下:神经网络介绍人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。当电信号通过树突进入到核细胞时,会逐渐聚集电荷。达到一定的电位后,细胞会被激活,通过轴突发出信号。从
- 【MATLAB】小波神经网络回归预测算法
Lwcah
MATLAB回归预测算法算法matlab神经网络
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义小波神经网络回归预测算法是一种利用小波变换和人工神经网络相结合的方法,用于解决回归预测问题。下面将详细介绍该算法的原理与方法:小波变换:小波变换是一种多分辨率分析技术,能够将信号分解成不同频率的子信号。小波变换使用小波函数作为基函数,在时间和尺度上对信号进行局部分析。分解产生的低频子信号表示信号的整体趋势,高频子信号表示信号的
- 非线性回归的原理与实现
o0Orange
回归数据挖掘人工智能
1.激活函数:激活函数是为了让神经网络可以拟合复杂的非线性函数,比如torch.nn.functional.relu()2.人工神经网络是多层人工神经元组成的网络结构,输入层,隐含层,输出层3,隐含层大于2的神经网络,都可以叫深度神经网络。importtorchimportmatplotlib.pyplotaspltfromtimeimportperf_counter#增加一个维度100000行1
- 从神经网络反思大脑
ozxdno
1.大脑与神经网络的相似性图1神经元与其他细胞的连接图2人工神经网络中的一个连接从上图可能看不出任何相似性,图2的x相当于图1的Synapticterninals(突触终端),x指向f的箭头相当于Axon(轴突),f可以看作整个神经细胞,y可以看作Dendrite(树突)。参考生物神经系统中神经元的排布,铺出人工神经网络(ANN)。图3多个连接形成的人工神经网络图3是一种相当广泛的基本神经网络的结
- 机器学习12-基本感知器
dracularking
机器学习机器学习人工智能感知器Perceptron
感知器(Perceptron)是一种最简单的人工神经网络结构,由美国心理学家FrankRosenblatt在1957年提出。它是一种单层的前馈神经网络,通常用于二分类问题。基本感知器由多个输入节点、一个输出节点和一组权重参数组成。每个输入节点都与输出节点连接,并且具有一个对应的权重参数,用来调节输入的重要性。感知器的输出是输入的线性组合,通过一个激活函数进行转换,最终输出一个二进制值(通常是0或1
- 【MATLAB】GA_BP神经网络回归预测算法
Lwcah
MATLAB回归预测算法算法matlab神经网络
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义GA_BP神经网络回归预测算法结合了遗传算法(GeneticAlgorithm,GA)和BP神经网络(BackpropagationNeuralNetwork,BPNN),用于解决回归预测问题。下面将详细介绍该算法的原理:BP神经网络回归模型:BP神经网络是一种前向人工神经网络,具有输入层、隐藏层和输出层。每个神经元都与下一层
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 深度学习新进展:探析AI领域的最新发展
X.AI666
深度学习人工智能深度学习
深度学习的进展在人工智能领域,深度学习已经成为了一个热门话题。它通过模拟人类大脑学习过程的神经网络,使得计算机能够从大量数据中自动提取特征、识别模式、进行分类以及预测等任务。近年来,深度学习技术取得了惊人的发展,应用范围不断扩大,涵盖了社交网络、自动驾驶、医疗诊断、金融预测等众多领域。本文将探讨深度学习领域的一些新进展。方向一:深度学习的基本原理和算法基本原理深度学习源于人工神经网络,这些人工神经
- BP神经网络风速预测
MATLAB代码顾问
神经网络人工智能深度学习
BP(Backpropagation)神经网络,也称为反向传播神经网络,是一种非常重要的人工神经网络。它基于梯度下降算法,通过反向传播误差来更新神经网络中的权重和偏差,以达到优化网络和提高预测准确性的目的。BP神经网络主要包括以下几个步骤:前向传播:在这个阶段,输入数据被送入网络,并通过每一层传播,直到输出层。每一层的输出都是下一层的输入。每个神经元的输出都是其权重加权输入的总和,再经过一个活化函
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟