自动控制原理中常用的MATLAB函数及操作整理总结

这篇博文是总结性文章,归纳整理了在自控原理课程中经常用到的一些MATLAB函数和操作,包括一些基础操作、分段函数、LORENZ方程、可控可观测转换、生成HILB矩阵等,遇到类似的问题可以直接套用这些模板,最下面是打包的M文件下载地址

1.LORENZ方程

function [dx]=LORENZ(t,x)
dx=[(-8/3)*x(1)+x(2)*x(3);-10*x(2)+10*x(3);-x(1)*x(2)+28*x(2)-x(3)];
function []=PLOT()
x=[0;0;10^-3];
[t,y]=ode45('LORENZ',[0,100],x);
plot(t,y)
figure;plot3(y(:,1),y(:,2),y(:,3))

自动控制原理中常用的MATLAB函数及操作整理总结_第1张图片

2.基础操作

2.1Gram判断可控

>> s=tf('s') 
>> G=(0.2*(s+2))/(s*(s+0.5)*(s+0.8)*(s+3)+0.2*(s+2)) 
Transfer function:
             0.2 s + 0.4
-------------------------------------
s^4 + 4.3 s^3 + 4.3 s^2 + 1.4 s + 0.4 
>> Lc=gram(ss(G),'c')
Lc =

    0.0081   -0.0000   -0.0212    0.0000
   -0.0000    0.0423   -0.0000   -0.2601
   -0.0212   -0.0000    0.5203    0.0000
    0.0000   -0.2601    0.0000    5.1694

2.2Jordan标准型

>> A=[1 2 3 4;5 6 7 8; 9 10 11 12;13 14 15 16];
>> B=[1 2;3 4;5 6;7 8];
>> C=[1 2 3 4;5 6 7 8];
>> D=zeros(2,2);
>> G=ss(A,B,C,D,'InputDelay',0.3,'OutputDelay',0.5)
>> [G1,T]=canon(G,'modal')

a = 
                x1           x2           x3           x4
   x1        36.21            0            0            0
   x2            0       -2.209            0            0
   x3            0            0  -2.565e-015            0
   x4            0            0            0  -2.036e-016
 
 
b = 
                u1           u2
   x1       -8.991       -11.09
   x2      -0.4937       0.4446
   x3  -2.191e-015  -3.232e-015
   x4    8.24e-016   1.411e-016
 
 
c = 
                x1           x2           x3           x4
   y1       -5.473       -1.606            0  -4.441e-016
   y2       -12.65      -0.6257    2.22e-015            0
 
 
d = 
       u1  u2
   y1   0   0
   y2   0   0
 
Input delays (listed by channel): 0.3  0.3  
Output delays (listed by channel): 0.5  0.5  
 
Continuous-time model.

T =

   -0.4385   -0.4966   -0.5546   -0.6127
    0.8716    0.4469    0.0222   -0.4025
    0.6100   -0.8738   -0.0824    0.3462
   -0.3503    0.0899    0.8710   -0.6106

2.3PID负反馈

>> s=tf('s');
>> G=10/(s+1)^3;
>> GC=0.48*(1+1/1.814*s+0.4353*s/(1+0.04353*s));
>> H=1;
>> GG=feedback(G*GC,H)

GG =
 
              0.1152 s^2 + 4.944 s + 4.8
  ---------------------------------------------------
  0.04353 s^4 + 1.131 s^3 + 3.246 s^2 + 7.988 s + 5.8

2.4TUSTIN变换

>> s=tf('s');
>> G=1/(s+2)^3;
>> G.ioDelay=2
>> G2=c2d(G,0.1,'tustin')
 
Transfer function:
          9.391e-005 z^3 + 0.0002817 z^2 + 0.0002817 z + 9.391e-005
z^(-20) * ---------------------------------------------------------
                     z^3 - 2.455 z^2 + 2.008 z - 0.5477
 
Sampling time: 0.1

2.5传递函数转状态

>> g11=tf(1,[1 2 3],'iodelay',0.5);
>> g12=tf(3,[4 5 6],'iodelay',0.3);
>> g21=tf(4,[7 8 9],'iodelay',0.15);
>> g22=tf(4,[7 8 9],'iodelay',0.15);
>> G=[g11 g12;g21 g22]
>> G1=ss(G)
 
a = 
           x1      x2      x3      x4      x5      x6
   x1      -2    -1.5       0       0       0       0
   x2       2       0       0       0       0       0
   x3       0       0   -1.25   -0.75       0       0
   x4       0       0       2       0       0       0
   x5       0       0       0       0       0  -1.286
   x6       0       0       0       0       1  -1.143
 
 
b = 
           u1      u2
   x1     0.5       0
   x2       0       0
   x3       0     0.5
   x4       0       0
   x5  0.5714  0.5714
   x6       0       0
 
 
c = 
         x1    x2    x3    x4    x5    x6
   y1     0     1     0  0.75     0     0
   y2     0     0     0     0     0     1
 
 
d = 
       u1  u2
   y1   0   0
   y2   0   0
 
Input delays (listed by channel): 0.15  0.15  
Output delays (listed by channel): 0.15  0  
I/O delays:
    0.2000         0
         0         0

2.6传递函数-定义算子方式

>> s=tf('s');
>> G=3*(s^2+3)/(s+2)^3*(s^2+2*s+1)*(s^2+5)

G =
 
  3 s^6 + 6 s^5 + 27 s^4 + 48 s^3 + 69 s^2 + 90 s + 45
  ----------------------------------------------------
                 s^3 + 6 s^2 + 12 s + 8

2.7传递函数-系数方式

>> num=[1,2,3];
>> den=[3,2,1];
>> G=tf(num,den)

G =
 
   s^2 + 2 s + 3
  ---------------
  3 s^2 + 2 s + 1

2.8传递函数矩阵

>> g11=tf(1,[1 2 3],'iodelay',0.5);
>> g12=tf(3,[4 5 6],'iodelay',0.3);
>> g21=tf(4,[7 8 9],'iodelay',0.15);
>> g22=tf(4,[7 8 9],'iodelay',0.15);
>> G=[g11 g12;g21 g22]

G =
 
  From input 1 to output...
                           1
   1:  exp(-0.5*s) * -------------
                     s^2 + 2 s + 3
 
                             4
   2:  exp(-0.15*s) * ---------------
                      7 s^2 + 8 s + 9
 
  From input 2 to output...
                            3
   1:  exp(-0.3*s) * ---------------
                     4 s^2 + 5 s + 6
 
                             4
   2:  exp(-0.15*s) * ---------------
                      7 s^2 + 8 s + 9

2.9传递函数延时

>> s=tf('s');
>> G=1/(s+2)^3;
>> G.ioDelay=2
 
Transfer function:
                      1
exp(-2*s) * ----------------------
            s^3 + 6 s^2 + 12 s + 8

2.10画NyBoNi三种图

g11=tf([0.806 0.264],[1 1.15 .202]);
g12=tf([-15 -1.42],[1 12.8 13.6 2.36]);
g21=tf([1.95 2.12 .49],[1 9.15 9.39 1.62]);
g22=tf([7.15 25.8 9.35],[1 20.8 116.4 111.6 18.8]);
G=[g11,g12;g21,g22];
nyquist(G)
figure,bode(G)
figure,nichols(G)

2.11矩阵求逆和特征值

>> inv(A)   
>> [V,D]=eig(A)

2.12矩阵输入

>> A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1]

A =

     1     2     3     4
     4     3     2     1
     2     3     4     1
     3     2     4     1

2.13均衡实现

G必须是稳定的才能用
>> [Gb,g,T]=balreal(G)

2.14离散传递函数

>> num=[6 -0.6 -0.12];
>> den=[1 -1 0.25 0.25 -0.125];
>> H=tf(num,den,'Ts',0.1)

H =
 
          6 z^2 - 0.6 z - 0.12
  -------------------------------------
  z^4 - z^3 + 0.25 z^2 + 0.25 z - 0.125
 
Sample time: 0.1 seconds

2.15离散稳定判断

>> num=[6 -0.6 -0.12];
den=[1 -1 0.25 0.25 -0.125];
H=tf(num,den,'Ts',0.1)
 
Transfer function:
        6 z^2 - 0.6 z - 0.12
-------------------------------------
z^4 - z^3 + 0.25 z^2 + 0.25 z - 0.125
 
Sampling time: 0.1
>> pzmap(H)
>> abs(eig(H))

ans =

    0.5000
    0.7071
    0.7071
    0.5000

2.16离散转连续

>> s=tf('s');
>> G=1/(s+2)^3;
>> G.ioDelay=2
>> G2=c2d(G,0.1,'tustin')
>> D1=d2c(G2)
 
Transfer function:
            9.391e-005 s^3 + 0.003096 s^2 + 0.04542 s + 1.01
exp(-2*s) * ------------------------------------------------
                    s^3 + 6.02 s^2 + 12.08 s + 8.081

2.17连续稳定判断

>> A=[1 2 3 4;5 6 7 8; 9 10 11 12;13 14 15 16];
>> B=[1 2;3 4;5 6;7 8];
>> C=[1 2 3 4;5 6 7 8];
>> D=zeros(2,2);
>> G=ss(A,B,C,D,'InputDelay',0.3,'OutputDelay',0.5)
>> eig(G)

ans =

   36.2094
   -2.2094
   -0.0000
   -0.0000

>> pzmap(G)

2.18连续转离散

>> g11=tf(1,[1 2 3],'iodelay',0.5);
>> g12=tf(3,[4 5 6],'iodelay',0.3);
>> g21=tf(4,[7 8 9],'iodelay',0.15);
>> g22=tf(4,[7 8 9],'iodelay',0.15);
>> G=[g11 g12;g21 g22]
>> T=0.1;
>> Gd=c2d(G,T)
 
Transfer function from input 1 to output...
                0.004671 z + 0.00437
 #1:  z^(-5) * ----------------------
               z^2 - 1.792 z + 0.8187
 
               0.0007007 z^2 + 0.004044 z + 0.0006493
 #2:  z^(-1) * --------------------------------------
                      z^3 - 1.88 z^2 + 0.892 z
 
Transfer function from input 2 to output...
               0.003594 z + 0.003447
 #1:  z^(-3) * ----------------------
               z^2 - 1.868 z + 0.8825
 
               0.0007007 z^2 + 0.004044 z + 0.0006493
 #2:  z^(-1) * --------------------------------------
                      z^3 - 1.88 z^2 + 0.892 z
 
Sampling time: 0.1

2.19零极点模型

>> P=[-1;-2;-3;-4];
>> Z=[-5;-2+2*i;-2-2*i];
>> G=zpk(Z,P,6)

G =
 
  6 (s+5) (s^2 + 4s + 8)
  -----------------------
  (s+1) (s+2) (s+3) (s+4)

2.20求K值范围

A=[-1.5 -13.5 -13 0;
    10 0 0 0;
    0 1 0 0;
    0 0 1 0];
B=[1;0;0;0];
C=[0 0 0 1];
D=0;
G=ss(A,B,C,D);
rlocus(G)
%k的稳定范围是53.3到439

2.21替换变量

>> syms x s;
>> F=x^5+3*x^4+4*x^3+2*x^2+3*x+6;
>> subs(F,x,(s-1)/(s+1))

2.22微分方程

>> syms t y;
>> Y=dsolve('D4y+11*D3y+41*D2y+61*Dy+30*y=exp(-6*t)*cos(5*t)','y(0)=1','Dy(0)=1','D2y(0)=0','D3y(0)=0')

2.23画响应曲线

>> s=tf('s');
>> G=10/(s+1)^3;
>> GC=0.48*(1+1/1.814*s+0.4353*s/(1+0.04353*s));
>> H=1;
>> GG=feedback(G*GC,H)
>> step(G,10)
>> impulse(G,10)

2.24转零极点模型

>> den=[3,2,1];
>> G=tf(num,den) 
>> zpk(G)
 
Zero/pole/gain:
 0.33333 (s^2 + 2s + 3)
------------------------
(s^2 + 0.6667s + 0.3333)
 

2.25状态方程

>> A=[1 2 3 4;5 6 7 8; 9 10 11 12;13 14 15 16];
>> B=[1 2;3 4;5 6;7 8];
>> C=[1 2 3 4;5 6 7 8];
>> D=zeros(2,2);
>> G=ss(A,B,C,D,'InputDelay',0.3,'OutputDelay',0.5)

G =
 
  A = 
       x1  x2  x3  x4
   x1   1   2   3   4
   x2   5   6   7   8
   x3   9  10  11  12
   x4  13  14  15  16
 
  B = 
       u1  u2
   x1   1   2
   x2   3   4
   x3   5   6
   x4   7   8
 
  C = 
       x1  x2  x3  x4
   y1   1   2   3   4
   y2   5   6   7   8
 
  D = 
       u1  u2
   y1   0   0
   y2   0   0
 
  Input delays (seconds): 0.3  0.3 
  Output delays (seconds): 0.5  0.5

2.26状态求传递

>> A=[1 2 3 4;5 6 7 8; 9 10 11 12;13 14 15 16];
>> B=[1 2;3 4;5 6;7 8];
>> C=[1 2 3 4;5 6 7 8];
>> D=zeros(2,2);
>> G=ss(A,B,C,D,'InputDelay',0.3,'OutputDelay',0.5)
>> G1=tf(G)
 
Transfer function from input 1 to output...
                       50 s^3 + 80 s^2 - 9.995e-014 s + 5.424e-031
 #1:  exp(-0.8*s) * -------------------------------------------------
                    s^4 - 34 s^3 - 80 s^2 - 2.215e-013 s - 4.178e-029
 
                      114 s^3 + 240 s^2 - 2.849e-013 s - 1.697e-029
 #2:  exp(-0.8*s) * -------------------------------------------------
                    s^4 - 34 s^3 - 80 s^2 - 2.215e-013 s - 4.178e-029
 
Transfer function from input 2 to output...
                      60 s^3 + 160 s^2 - 3.202e-013 s - 1.303e-028
 #1:  exp(-0.8*s) * -------------------------------------------------
                    s^4 - 34 s^3 - 80 s^2 - 2.215e-013 s - 4.178e-029
 
                      140 s^3 + 320 s^2 - 5.892e-013 s - 2.429e-028
 #2:  exp(-0.8*s) * -------------------------------------------------
                    s^4 - 34 s^3 - 80 s^2 - 2.215e-013 s - 4.178e-029

2.27状态转传递及零极点

>>  A=[1 2 3;4 5 6;7 8 9]  ;
>>  B=[4;3;2];
>>  C=[1,2,3];
>> sys=ss(A,B,C,0);
>> tfun=tf(sys)

tfun =
 
     16 s^2 + 72 s + 6.395e-14
  -------------------------------
  s^3 - 15 s^2 - 18 s + 2.073e-15
 
Continuous-time transfer function.

>> zpm=zpk(sys)

zpm =
 
      16 s (s+4.5)
  ---------------------
  s (s-16.12) (s+1.117)
 
Continuous-time zero/pole/gain model.

2.28最小化简

>> A=[1 2 3 4;5 6 7 8; 9 10 11 12;13 14 15 16];
>> B=[1 2;3 4;5 6;7 8];
>> C=[1 2 3 4;5 6 7 8];
>> D=zeros(2,2);
>> G=ss(A,B,C,D,'InputDelay',0.3,'OutputDelay',0.5)
>> Gm=minreal(G)
2 states removed.
 
a = 
           x1      x2
   x1  -1.809  -1.051
   x2  -14.47   35.81
 
 
b = 
            u1       u2
   x1  -0.2129   0.7221
   x2   -9.163   -10.93
 
 
c = 
           x1      x2
   y1  0.3611  -5.465
   y2   4.101  -12.54
 
 
d = 
       u1  u2
   y1   0   0
   y2   0   0
 
Input delays (listed by channel): 0.3  0.3  
Output delays (listed by channel): 0.5  0.5  
 

3.可控可观测转换

function Gs=sscanform(G,type)
switch type
case 'ctrl'
    G=tf(G);Gs=[];
    G.num{1}=G.num{1}/G.den{1}(1);
    G.den{1}=G.den{1}/G.den{1}(1);d=G.num{1}(1);
    G1=G;G1.ioDelay=0;G1=G1-d;
    num=G1.num{1};den=G1.den{1};n=length(G.den{1})-1;
    A=[zeros(n-1,1) eye(n-1);-den(end:-1:2)];
    B=[zeros(n-1,1);1];C=num(end:-1:2);D=d;
    Gs=ss(A,B,C,D,'Ts',G.Ts,'ioDelay',G.ioDelay);
case 'obsv'
    Gc=sscanform(G,'ctrl');
    Gs=ss(Gc.a',Gc.c',Gc.b',Gc.d','Ts',G.Ts,'ioDelay',G.ioDelay);
otherwise
    error('only options "ctrl" and  "obsv" are applicable.');
end

4.生成Hilb矩阵

function A=myhilb(n, m)
%MYHILB a demonstrative M-function.
% A=MYHILB(N, M) generates an N by M Hilbert matrix A.
% A=MYHILB(N) generates an N by N square Hilbert matrix.
% MYHILB(N,M) displays ONLY the Hilbert matrix, but do not return any
% matrix back to the calling function.
%
%See also: HILB.
 
% Designed by Professor Dingyu XUE, Northeastern University, PRC
% 5 April, 1995, Last modified by DYX at 21 March, 2000
if nargout>1, error('Too many output arguments.'); end
if nargin==1, m=n;
elseif nargin==0 || nargin>2
error('Wrong number of iutput arguments.');
end
A1=zeros(n,m);
for i=1: n
for j=1:m
A1(i,j)=1/(i+j-2);
end, end
if nargout==1, A=A1; elseif nargout==0, disp(A1); end

 

你可能感兴趣的:(Matlab程序)