PyTorch的Permute、Transpose、unsqueeze、reshape、view和Numpy的resize,reshape

**

PyTorch的Permute、Transpose、view、unsqueeze和Numpy的resize,reshape

pytorch:https://pytorch.org/docs/stable/index.html
**
PyTorch的Permuted的使用:
PyTorch的Permute、Transpose、unsqueeze、reshape、view和Numpy的resize,reshape_第1张图片
PyTorch的Transpose的使用:transpose只能操作2D矩阵的转置。
PyTorch的Permute、Transpose、unsqueeze、reshape、view和Numpy的resize,reshape_第2张图片

>>> a = torch.randn(1, 2, 3, 4)
>>> a.size()
torch.Size([1, 2, 3, 4])
>>> b = a.transpose(1, 2)  # Swaps 2nd and 3rd dimension
>>> b.size()
torch.Size([1, 3, 2, 4])
>>> c = a.view(1, 3, 2, 4)  # Does not change tensor layout in memory
>>> c.size()
torch.Size([1, 3, 2, 4])

PyTorch的squeeze、unsqueeze的使用:

torch.squeeze(input, dim=None, out=None) → Tensor
eg: A
1BC1D → ABCD
当dim给定的时候,压缩运算仅仅运算在给定的维度,

>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])

torch.unsqueeze(input, dim, out=None) → Tensor
PyTorch的Permute、Transpose、unsqueeze、reshape、view和Numpy的resize,reshape_第3张图片
PyTorch的reshape的使用:只改变输入数据的维度,内容不变。(变形而已)
PyTorch的Permute、Transpose、unsqueeze、reshape、view和Numpy的resize,reshape_第4张图片
PyTorch的view的使用:

>>> x = torch.randn(4, 4)
>>> x.size()
torch.Size([4, 4])
>>> y = x.view(16)
>>> y.size()
torch.Size([16])
>>> z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
>>> z.size()
torch.Size([2, 8])

**

Numpy

**
reshape:numpy中的reshape类似pytorch的reshape
resize:numpy中resize类似pytorch的view

>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(2,3))
array([[0, 1, 2],
       [3, 0, 1]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],
       [0, 1, 2, 3]])

你可能感兴趣的:(python和pytorch)