#ifndef STATE_POS_VEL_H
#define STATE_POS_VEL_H
#include
namespace BFL
{
/// Class representing state with pos and vel
class StatePosVel
{
public:
tf::Vector3 pos_, vel_;
/// Constructor
StatePosVel(const tf::Vector3& pos = tf::Vector3(0, 0, 0),
const tf::Vector3& vel = tf::Vector3(0, 0, 0)): pos_(pos), vel_(vel) {};
/// Destructor
~StatePosVel() {};
/// operator +=
StatePosVel& operator += (const StatePosVel& s)
{
this->pos_ += s.pos_;
this->vel_ += s.vel_;
return *this;
}
/// operator +
StatePosVel operator + (const StatePosVel& s)
{
StatePosVel res;
res.pos_ = this->pos_ + s.pos_;
res.vel_ = this->vel_ + s.vel_;
return res;
}
/// output stream for StatePosVel
friend std::ostream& operator<< (std::ostream& os, const StatePosVel& s)
{
os << "(" << s.pos_[0] << ", " << s.pos_[1] << ", " << s.pos_[2] << ")--("
<< "(" << s.vel_[0] << ", " << s.vel_[1] << ", " << s.vel_[2] << ") ";
return os;
};
};
} // end namespace
#endif
#ifndef __TRACKER__
#define __TRACKER__
#include "state_pos_vel.h"
#include
#include
namespace estimation
{
class Tracker
{
public:
/// constructor
Tracker(const std::string& name): name_(name) {};
/// destructor
virtual ~Tracker() {};
/// return the name of the tracker
const std::string& getName() const
{
return name_;
};
/// initialize tracker
virtual void initialize(const BFL::StatePosVel& mu, const BFL::StatePosVel& sigma, const double time) = 0;
/// return if tracker was initialized
virtual bool isInitialized() const = 0;
/// return measure for tracker quality: 0=bad 1=good
virtual double getQuality() const = 0;
/// return the lifetime of the tracker
virtual double getLifetime() const = 0;
/// return the time of the tracker
virtual double getTime() const = 0;
/// update tracker
virtual bool updatePrediction(const double time) = 0;
virtual bool updateCorrection(const tf::Vector3& meas,
const MatrixWrapper::SymmetricMatrix& cov) = 0;
/// get filter posterior
virtual void getEstimate(BFL::StatePosVel& est) const = 0;
private:
std::string name_;
}; // class
}; // namespace
#endif
#ifndef __TRACKER_KALMAN__
#define __TRACKER_KALMAN__
#include "tracker.h"
// bayesian filtering
#include
#include
#include
#include
#include "state_pos_vel.h"
// TF
#include
// log files
#include
namespace estimation
{
class TrackerKalman: public Tracker
{
public:
/// constructor
TrackerKalman(const std::string& name, const BFL::StatePosVel& sysnoise);
/// destructor
virtual ~TrackerKalman();
/// initialize tracker
virtual void initialize(const BFL::StatePosVel& mu, const BFL::StatePosVel& sigma, const double time);
/// return if tracker was initialized
virtual bool isInitialized() const
{
return tracker_initialized_;
};
/// return measure for tracker quality: 0=bad 1=good
virtual double getQuality() const
{
return quality_;
};
/// return the lifetime of the tracker
virtual double getLifetime() const;
/// return the time of the tracker
virtual double getTime() const;
/// update tracker
virtual bool updatePrediction(const double time);
virtual bool updateCorrection(const tf::Vector3& meas,
const MatrixWrapper::SymmetricMatrix& cov);
/// get filter posterior
virtual void getEstimate(BFL::StatePosVel& est) const;
private:
// pdf / model / filter
BFL::Gaussian prior_;
BFL::ExtendedKalmanFilter* filter_;
BFL::LinearAnalyticConditionalGaussian* sys_pdf_;
BFL::LinearAnalyticSystemModelGaussianUncertainty* sys_model_;
BFL::LinearAnalyticConditionalGaussian* meas_pdf_;
BFL::LinearAnalyticMeasurementModelGaussianUncertainty* meas_model_;
MatrixWrapper::Matrix sys_matrix_;
MatrixWrapper::SymmetricMatrix sys_sigma_;
double calculateQuality();
// vars
bool tracker_initialized_;
double init_time_, filter_time_, quality_;
}; // class
}; // namespace
#endif
tracker_kalman.cpp
#include "tracker_kalman.h"
#include
using namespace MatrixWrapper;
using namespace BFL;
using namespace tf;
using namespace std;
using namespace ros;
const static double damping_velocity = 0.9;
namespace estimation
{
// constructor
TrackerKalman::TrackerKalman(const string& name, const StatePosVel& sysnoise):
Tracker(name),
filter_(NULL),
sys_pdf_(NULL),
sys_model_(NULL),
meas_pdf_(NULL),
meas_model_(NULL),
sys_matrix_(6, 6),
tracker_initialized_(false)
{
// create sys model
sys_matrix_ = 0; // F
for (unsigned int i = 1; i <= 3; i++)
{
sys_matrix_(i, i) = 1;
sys_matrix_(i + 3, i + 3) = damping_velocity;
}
// Q
ColumnVector sys_mu(6);
sys_mu = 0;
sys_sigma_ = SymmetricMatrix(6);
sys_sigma_ = 0;
for (unsigned int i = 0; i < 3; i++)
{
sys_sigma_(i + 1, i + 1) = pow(sysnoise.pos_[i], 2);
sys_sigma_(i + 4, i + 4) = pow(sysnoise.vel_[i], 2);
}
Gaussian sys_noise(sys_mu, sys_sigma_);
sys_pdf_ = new LinearAnalyticConditionalGaussian(sys_matrix_, sys_noise);
sys_model_ = new LinearAnalyticSystemModelGaussianUncertainty(sys_pdf_);
// create meas model
// H
Matrix meas_matrix(3, 6);
meas_matrix = 0;
for (unsigned int i = 1; i <= 3; i++)
meas_matrix(i, i) = 1;
// R
ColumnVector meas_mu(3);
meas_mu = 0;
SymmetricMatrix meas_sigma(3);
meas_sigma = 0;
for (unsigned int i = 0; i < 3; i++)
meas_sigma(i + 1, i + 1) = 0;
Gaussian meas_noise(meas_mu, meas_sigma);
meas_pdf_ = new LinearAnalyticConditionalGaussian(meas_matrix, meas_noise);
meas_model_ = new LinearAnalyticMeasurementModelGaussianUncertainty(meas_pdf_);
};
// destructor
TrackerKalman::~TrackerKalman()
{
if (filter_) delete filter_;
if (sys_pdf_) delete sys_pdf_;
if (sys_model_) delete sys_model_;
if (meas_pdf_) delete meas_pdf_;
if (meas_model_) delete meas_model_;
};
// initialize prior density of filter
void TrackerKalman::initialize(const StatePosVel& mu, const StatePosVel& sigma, const double time)
{
ColumnVector mu_vec(6);
SymmetricMatrix sigma_vec(6);
sigma_vec = 0;
for (unsigned int i = 0; i < 3; i++)
{
mu_vec(i + 1) = mu.pos_[i];
mu_vec(i + 4) = mu.vel_[i];
sigma_vec(i + 1, i + 1) = pow(sigma.pos_[i], 2);
sigma_vec(i + 4, i + 4) = pow(sigma.vel_[i], 2);
}
prior_ = Gaussian(mu_vec, sigma_vec);
filter_ = new ExtendedKalmanFilter(&prior_);
// tracker initialized
tracker_initialized_ = true;
quality_ = 1;
filter_time_ = time;
init_time_ = time;
}
// update filter prediction
bool TrackerKalman::updatePrediction(const double time)
{
bool res = true;
if (time > filter_time_)
{
// set dt in sys model
for (unsigned int i = 1; i <= 3; i++)
sys_matrix_(i, i + 3) = time - filter_time_;
sys_pdf_->MatrixSet(0, sys_matrix_);
// scale system noise for dt
sys_pdf_->AdditiveNoiseSigmaSet(sys_sigma_ * pow(time - filter_time_, 2));
filter_time_ = time;
// update filter
res = filter_->Update(sys_model_);
if (!res) quality_ = 0;
else quality_ = calculateQuality();
}
return res;
};
// update filter correction
bool TrackerKalman::updateCorrection(const tf::Vector3& meas, const MatrixWrapper::SymmetricMatrix& cov)
{
assert(cov.columns() == 3);
// copy measurement
ColumnVector meas_vec(3);
for (unsigned int i = 0; i < 3; i++)
meas_vec(i + 1) = meas[i];
// set covariance
((LinearAnalyticConditionalGaussian*)(meas_model_->MeasurementPdfGet()))->AdditiveNoiseSigmaSet(cov);
// update filter
bool res = filter_->Update(meas_model_, meas_vec);
if (!res) quality_ = 0;
else quality_ = calculateQuality();
return res;
};
void TrackerKalman::getEstimate(StatePosVel& est) const
{
ColumnVector tmp = filter_->PostGet()->ExpectedValueGet();
for (unsigned int i = 0; i < 3; i++)
{
est.pos_[i] = tmp(i + 1);
est.vel_[i] = tmp(i + 4);
}
};
double TrackerKalman::calculateQuality()
{
double sigma_max = 0;
SymmetricMatrix cov = filter_->PostGet()->CovarianceGet();
for (unsigned int i = 1; i <= 2; i++)
sigma_max = max(sigma_max, sqrt(cov(i, i)));
return 1.0 - min(1.0, sigma_max / 1.5);
}
double TrackerKalman::getLifetime() const
{
if (tracker_initialized_)
return filter_time_ - init_time_;
else
return 0;
}
double TrackerKalman::getTime() const
{
if (tracker_initialized_)
return filter_time_;
else
return 0;
}
}; // namespace
#include
#include "tracker_kalman.h"
using namespace MatrixWrapper;
using namespace estimation;
using namespace BFL;
using namespace tf;
using namespace std;
int main() {
// system noise
BFL::StatePosVel sys_sigma_(Vector3(0.05, 0.05, 0.05),
Vector3(1.0, 1.0, 1.0));
TrackerKalman filter("tracker_name", sys_sigma_);
// EKF prior density
StatePosVel prior_sigma(Vector3(0.1, 0.1, 0.1),
Vector3(0.0000001, 0.0000001, 0.0000001));
StatePosVel mu(Vector3(0, 0, 0), Vector3(0.5, 0.5, 0));
filter.initialize(mu, prior_sigma, 0);
SymmetricMatrix cov(3);
cov = 0.0;
cov(1, 1) = 0.0025;
cov(2, 2) = 0.0025;
cov(3, 3) = 0.0025;
for (int i = 1; i < 10; ++i) {
filter.updatePrediction(1 * i);
filter.updateCorrection(Vector3(0.22*i, 0.09*i, 0), cov);
StatePosVel est;
filter.getEstimate(est);
cout << est << endl;
}
return 0;
}
#include
#include
#include "tracker_kalman.h"
using namespace MatrixWrapper;
using namespace estimation;
using namespace BFL;
using namespace tf;
using namespace std;
class Test {
public:
TrackerKalman filter;
StatePosVel sys_sigma_;
int test;
Test(int test)
: sys_sigma_(Vector3(0.05, 0.05, 0.05), Vector3(1.0, 1.0, 1.0)),
filter("tracker_name", sys_sigma_) {
StatePosVel prior_sigma(Vector3(0.1, 0.1, 0.1),
Vector3(0.0000001, 0.0000001, 0.0000001));
StatePosVel mu(Vector3(0, 0, 0), Vector3(0.5, 0.5, 0));
filter.initialize(mu, prior_sigma, 0);
this->test = test;
}
~Test() {}
void Propagate(float time) {
filter.updatePrediction(time);
}
void update(Vector3 meas, SymmetricMatrix cov) {
filter.updateCorrection(meas, cov);
}
void getState(StatePosVel &est) {
filter.getEstimate(est);
}
};
int main() {
list<Test> l;
l.push_back(Test(1));
list<Test>::iterator i = l.begin();
cout << i->test << endl;
// i->Propagate(1);
Test tt(6);
tt.Propagate(0.6);
Test *t = new Test(6);
SymmetricMatrix cov(3);
cov = 0.0;
cov(1, 1) = 0.0025;
cov(2, 2) = 0.0025;
cov(3, 3) = 0.0025;
for (int i = 1; i < 10; ++i) {
t->Propagate(1 * i);
t->update(Vector3(0.22 * i, 0.09 * i, 0), cov);
StatePosVel est;
t->getState(est);
cout << est << endl;
}
return 0;
}
i->Propagate(1);
不注释,会有段错误,注释则会在循环之后出现段错误。所以要使用指针,即list l;
,原因不明。