"""
In the general case, we have a "target function" that we want to minimize,
and we also have its "gradient function". Also, we have chosen a starting
value for the parameters "theta_0".
"""
from numpy import *
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine)
dataMat.append(fltLine)
return dataMat
def distEclud(vecA,vecB):
return sqrt(sum(power(vecA-vecB,2)))
def randCent(dataSet,k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j])-minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids
def kMeans(dataSet,k,distMeas=distEclud,createCent = randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist= inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged =True
clusterAssment[i,:] = minIndex, minDist**2
print centroids
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
print nonzero(clusterAssment[:,0].A==cent);
print nonzero(clusterAssment[:,0].A==cent)[0];
centroids[cent,:] = mean(ptsInClust,axis=0)
print centroids[cent,:]
return centroids,clusterAssment
import kMeans_my
dataMat3 = mat(kMeans_my.loadDataSet('testSet2.txt'))
def biKmeans(dataSet,k,distMeas=distEclud):
m = shape(dataSet) [0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet,axis=0).tolist()[0]
centList = [centroid0]
for j in range(m):
clusterAssment[j,1] = distMeas(mat(centroid0),dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = \
dataSet[nonzero(clusterAssment[:,0].A == i)[0],:]
centroidMat, splitClustAss = \
kMeans(ptsInCurrCluster,2,distMeas)
sseSplit = sum(splitClustAss[:, 1])
sseNotSplit = \
sum(clusterAssment[nonzero(clusterAssment[:,0].A != i)[0],1])
print "sseSplit, and notSplit:",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:0].A==1)[0],0] = len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A==0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is:' , bestCentToSplit
print 'the len of bestClustAss is:' , len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:]
centList.append(bestNewCents[1,:])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss
return mat(centList), clusterAssment
import urllib
import json
def geoGrab(stAddress, city):
apiStem = 'http://where.yahooapis.com/geocode?'
params = {}
params['flags'] = 'J'
params['appid'] = 'aaa0VN6k'
params['location'] = '%s %s' % (stAddress, city)
url_params = urllib.urlencode(params)
yahooApi = apiStem + url_params
print yahooApi
c=urllib.urlopen(yahooApi)
return json.loads(c.read())
from time import sleep
def massPlaceFind(fileName):
fw = open('places.txt', 'w')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split('\t')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict['ResultSet']['Error'] == 0:
lat = float(retDict['ResultSet']['Results'][0]['latitude'])
lng = float(retDict['ResultSet']['Results'][0]['longitude'])
print "%s\t%f\t%f" % (lineArr[0], lat, lng)
fw.write('%s\t%f\t%f\n' % (line, lat, lng))
else: print "error fetching"
sleep(1)
fw.close()
def distSLC(vecA, vecB):
a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \
cos(pi * (vecB[0,0]-vecA[0,0]) /180)
return arccos(a + b)*6371.0
import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
dataMat = mat(datList)
myCentroids, clustAssing = biKmeans(dataMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect = [0.1, 0.1, 0.8, 0.8]
scatterMarkers = ['s', 'o', '^', '8', 'p', \
'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0 = fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1 = fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = dataMat[nonzero(clustAssing[:, 0].A == i)[0], :]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:, 0].flatten().A[0], ptsInCurrCluster[:, 1].flatten().A[0], marker=markerStyle,s=90)
ax1.scatter(myCentroids[:, 0].flatten().A[0], myCentroids[:, 1].flatten().A[0], marker='+', s=300)
plt.show()