- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- 聊聊AI中的“蒸馏”技术
自由鬼
行业发展IT应用探讨产品分析对比人工智能深度学习机器学习
一、什么是“蒸馏”技术“蒸馏”技术实际上是指知识蒸馏(KnowledgeDistillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。1.知识蒸馏的过程教师模型(TeacherModel)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生
- AI:263-强化学习在自动驾驶领域的应用与前沿挑战
一键难忘
精通AI实战千例专栏合集自动驾驶汽车强化学习人工智能
强化学习在自动驾驶中的应用与挑战自动驾驶汽车是当前人工智能和机器学习的热门研究方向,而强化学习(ReinforcementLearning,RL)因其在复杂动态环境中的决策能力,成为推动自动驾驶技术的重要工具。本文将探讨强化学习在自动驾驶中的应用、面临的挑战,并提供一个简单的代码实例以展示如何在自动驾驶中应用强化学习。1.强化学习的基础概念强化学习是一种通过试错的方式来学习最佳策略的机器学习方法。
- 高效学习方法分享:提升学习效率与深度的实用技巧
威哥说编程
学习方法
学习是一个不断积累与优化的过程。无论你是学生、职场新人,还是希望提升自己的专业技能,掌握高效的学习方法都至关重要。在这篇文章中,我们将分享一些提升学习效率的策略,帮助你在有限的时间内获取更多的知识,且能记得更牢靠、理解得更透彻。一、理解学习的本质:主动学习VS被动学习在学习过程中,区分主动学习和被动学习至关重要。被动学习通常指的是通过听、看、读等方式接受信息,而主动学习则是指积极地进行思考、讨论、
- 高效学习方法分享
网络安全我来了
IT技术学习方法
高效学习方法分享引言在信息高速发展的今天,学习已经成为每个人不可或缺的一部分。你是否曾感到学习的疲惫,信息的爆炸让你无从下手?今天,我们将探讨几种高效的学习方法,帮助你从中找到适合自己的学习之道。关于学习,常常有人问:“我们如何才能真正掌握所学的知识?”本篇文章将给你答案。1.高效学习的方法概述1.1金字塔学习模型想象一下,学习就像筑造一座金字塔。底层的知识打牢了基础,越往上走,留存率就越高。金字
- Day29(补)-【AI思考】-精准突围策略——从“时间贫困“到“效率自由“的逆袭方案
一个一定要撑住的学习者
#AI深度思考学习方法人工智能unity游戏引擎
文章目录精准突围策略——从"时间贫困"到"效率自由"的逆袭方案**第一步:目标熵减工程(建立四维坐标)**与其他学习方法的结合**第二步:清华方法本土化移植**与其他工具对比**~~第三步:游戏化改造方案~~****第四步:环境重塑工程****第五步:技术杠杆矩阵****第六步:风险对冲策略**可行性验证模型甘特图OKR看板精准突围策略——从"时间贫困"到"效率自由"的逆袭方案让思想碎片重焕生机的
- 【高效学习方法分享】费曼学习法
AI天才研究院
每月推书学习
费曼学习法费曼学习法是美国著名物理学家理查德·费曼总结出来的一种学习方法。费曼学习法的核心是:“用转述、教给别人的方法巩固自己的知识”。具体步骤包括四个步骤:确定学习目标:将一个自己不理解的、没见过的概念或难题写在纸上。像老师一样教给别人:模拟自己是一位老师,面对完全不懂这个领域的人,用自己的话,尽可能具体形象地讲诉。回顾:找到漏洞,重新学习反思第2步遇到的问题,哪些地方卡壳了?哪些地方对方没有真
- 从脑科学角度分析高效学习方法
ka__ka__
经历思考学习方法
从脑科学角度分析高效学习方法先说说为什么要从脑科学角度分析高效学习方法。很多时候,关于高效学习方法,人们往往都是参考成功人士或者大神学霸的经验分享。但是,这种非常个人化并且主观性很强的东西一般没有很强的广泛使用性。那么如何找到更加科学的更加客观的高效学习方法呢?针对这个问题,应该从事物本质出发,按照第一性原理来思考。从第一性原理分析,学习知识的本质在某种程度上就是让大脑对特定的知识产出对应的神经网
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- 1. Python Web 框架要点
徐红珍
pythondjango
PythonWeb框架要点1.Web应用程序处理流程2.Web程序框架的意义用于搭建Web应用程序免去不同Web应用相同代码部分的重复编写,只需关心Web应用核心的业务逻辑实现3.Web应用程序的本质接收并解析HTTP请求,获取具体的请求信息处理本次HTTP请求,即完成本次请求的业务逻辑处理构造并返回处理结果——HTTP响应百度ip地址:14.215.177.394.Web框架学习方法如何搭建工程
- 人脸识别的经典深度学习方法
明初啥都能学会
深度学习人工智能
人脸识别的经典深度学习方法引言1.卷积神经网络(CNN)1.1LeNet1.2AlexNet1.3VGGNet1.4ResNet2.人脸检测2.1Viola-Jones算法2.2基于深度学习的人脸检测3.人脸特征提取3.1主成分分析(PCA)3.2人脸对齐3.2.1基于特征点的对齐3.2.2基于深度学习的对齐4.人脸识别模型4.1传统机器学习方法4.2基于深度学习的方法5.公式解读5.1卷积运算5
- 信息系统项目管理师考试概述与备考策略
Evaporator Core
系统架构设计师软考信息系统项目管理师基础班信息系统项目管理师提高班系统架构性能优化
引言信息系统项目管理师(以下简称“软考高项”)是中国计算机技术与软件专业技术资格(水平)考试中的高级资格认证之一。该认证旨在评估考生在信息系统项目管理领域的理论知识和实践能力,涵盖项目管理的各个方面,包括项目启动、规划、执行、监控和收尾等。通过软考高项的认证,不仅能够提升个人职业竞争力,还能为企业提供高质量的项目管理人才。本文将系统介绍软考高项考试的基本情况、考试内容、备考策略以及学习方法,帮助考
- 【llm对话系统】RL强化学习的技术演进与RLHF
kakaZhui
人工智能chatgptllama
一、强化学习基础知识强化学习(ReinforcementLearning,RL)是一种机器学习方法,它通过智能体(Agent)与环境(Environment)的交互来学习如何行动以最大化累积奖励(Reward)。1.核心概念:智能体(Agent):做出决策并采取行动的学习者。环境(Environment):智能体所处的外部世界,对智能体的行动做出反应。状态(State,S):对环境当前情况的描述。
- “随机森林”及“混合随机森林和多目标粒子群优化”(RF_MOPSO),以预测目标作为学习方法并分别找到多特征过程的最佳参数(Matlab代码实现)
科研_研学社
随机森林学习方法matlab
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2.1算例12.2算例23参考文献4Matlab代码实现1概述多目标优化问题普遍涉及到工程设计、生产制造、信息处理等应用领域。粒子群优化算法具有快速收敛、简单易行、并行搜索等特点,特别适合处理多目标优化问题。本文对多目标粒子群优化算法进行系统性的研究,结合随机森林的优势
- 自主学习与自然语言处理的融合:实现更智能的聊天机器人
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍自主学习(autonomouslearning)是一种学习方法,它允许机器人或计算机系统在没有人类干预的情况下自行学习和改进。自主学习可以帮助机器人或计算机系统更好地适应新的环境和任务,提高其智能性和效率。自然语言处理(naturallanguageprocessing,NLP)是计算机科学和人工智能领域的一个分支,它涉及计算机如何理解、处理和生成人类语言。自主学习与自然语言处理的融合
- 0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
跟德姆(dom)一起学AI
人工智能自然语言处理分类python深度学习transformer
1文本分类介绍1.1文本分类概念文本分类的是将文档(例如电子邮件,帖子,文本消息,产品评论等)分配给一个或多个类别.当今文本分类的实现多是使用机器学习方法从训练数据中提取分类规则以进行分类,因此构建文本分类器需要带标签的数据.1.2文本分类种类二分类:文本被分类两个类别中,往往这两个类别是对立面,比如:判断一句评论是好评还是差评.单标签多分类:文本被分入到多个类别中,且每条文本只能属于某一个类别(
- 2025年美赛数学建模 Problem C: Models for Olympic Medal Tables 问题 C:奥运奖牌榜模型 详细解析和代码(持续更新中,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模开发语言2025年数学建模美赛2025美赛C题奥运奖牌榜模型
目录Python代码MATLAB代码2.模型框架2.1回归分析模型2.2集成学习方法2.3时间序列预测2.4模型不确定性估计3.数据处理与模型训练4.预测2028年奥运奖牌5.预测区间和不确定性6.哪些国家可能提高或下降?7.尚未获得奖牌的国家的预测8.奥运项目与奖牌数的关系2.教练与国家奖牌数的关联2.1定义“伟大教练”效应2.2数据分析方法2.3分析结果3.选择三个国家并确定应投资的运动项目3
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 架构开场介绍&&环境准备
Jsben
架构linux
第0章学习方法的变化1.第一阶段学习方法1.记命令80-1502.记参数常用3-5个3.练习考试题手写4.回顾总结2.第二阶段学习方法1.理解思考提问2.应用场景干嘛用的怎么用3.安装部署配置文件启动测试关闭4.各种报错看日志看日志看日志收集整理5.英文单词量积累不然看不懂报错第1章综合架构开场介绍中小规模网站架构组成顾客–用户访问网站的人员保安–防火墙(firewalld)进行访问策略控制迎宾–
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- Nginx UI:一款开源的Nginx可视化管理界面,让你轻松管理nginx的配置
小华同学ai
nginxui开源
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和工作学习方法NginxUI是由0xJacky和Hintay共同开发的一款Nginx网络管理界面。它旨在为Nginx提供一个易于使用的图形界面,让用户可以在线查看服务器状态、编辑配置文件、管理网站和证书等。想要一睹为快?访问https://demo.nginxui.com/使用以下凭据登录:用户名:admin密码:admin特色功
- C#的学习方法和思路,全部整理在这了!
编程乐趣
c#学习方法开发语言
大家好,我是编程乐趣。今天梳理下,我从写公众号以来,发表过的有关学习编程的自学方法、架构、学习路线、重构、编程经验等内容,希望对大家有点启发。一、自学编程的方法用这个方法学习C#的,一年后都变成高级工程师了!自学C#,要懂得善用MSDN自学C#,要懂得用好对象浏览器C#自学建议:避开新手易犯的错误一个很简单却能让你快速掌握C#的方法二、学习架构的思考DDD与三层架构,一定就是DDD好?程序员,真有
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1