Unity Standard shader 里面 全局光照Global Illumination(GI)

Unity Standard shader 里面 全局光照Global Illumination(GI)

Standard 粗略的来看,其实分为两个部分,一个是真正的BRDF,第二部分是UnityGI。

全局光照是在局部光照的基础上,增加考虑物体与物体之间光线交互。所以说如果局部光照系统就是由光源+待渲染物体+视点组成的话,那么全局光照系统就是由光源+各待渲染物体之间的反射光+待渲染物体+视点组成。

另外如果没有全局光照技术,这些自发光的表面并不会真的着凉周围的物体,而是它本身看起来更亮了而已。

##Unity GI

half4 fragForwardBaseInternal (VertexOutputForwardBase i)
{
    FRAGMENT_SETUP(s)

    UNITY_SETUP_INSTANCE_ID(i);
    UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(i);

    UnityLight mainLight = MainLight ();
    UNITY_LIGHT_ATTENUATION(atten, i, s.posWorld);

    half occlusion = Occlusion(i.tex.xy);
    UnityGI gi = FragmentGI (s, occlusion, i.ambientOrLightmapUV, atten, mainLight);

    half4 c = UNITY_BRDF_PBS (s.diffColor, s.specColor, s.oneMinusReflectivity, s.smoothness, s.normalWorld, -s.eyeVec, gi.light, gi.indirect);
    c.rgb += Emission(i.tex.xy);

    UNITY_APPLY_FOG(i.fogCoord, c.rgb);
    return OutputForward (c, s.alpha);
}

在UnityStandardCore.cginc里面,简单的概括 color = FragmentGI + UNITY_BRDF_PBS +Emission
GI主要在UnityGI,另外还有在UNITY_BRDF_PBS 引用到。

FragmentGI 函数 计算global illumination,返回 UnityGI

先看下 UnityGI,这个是个结构体。
在 UnityLightingCommon.cginc里面有定义

struct UnityGI
{
    UnityLight light;
    UnityIndirect indirect;
};

在UnityStandardCore.cginc 里面有四处定义了FragmentGI函数,最后还是下面的代码处理返回UnityGI

inline UnityGI FragmentGI (FragmentCommonData s, half occlusion, half4 i_ambientOrLightmapUV, half atten, UnityLight light, bool reflections)
{
    UnityGIInput d;
    d.light = light;
    d.worldPos = s.posWorld;
    d.worldViewDir = -s.eyeVec;
    d.atten = atten;
    #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
        d.ambient = 0;
        d.lightmapUV = i_ambientOrLightmapUV;
    #else
        d.ambient = i_ambientOrLightmapUV.rgb;
        d.lightmapUV = 0;
    #endif

    d.probeHDR[0] = unity_SpecCube0_HDR;
    d.probeHDR[1] = unity_SpecCube1_HDR;
    #if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
      d.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending
    #endif
    #ifdef UNITY_SPECCUBE_BOX_PROJECTION
      d.boxMax[0] = unity_SpecCube0_BoxMax;
      d.probePosition[0] = unity_SpecCube0_ProbePosition;
      d.boxMax[1] = unity_SpecCube1_BoxMax;
      d.boxMin[1] = unity_SpecCube1_BoxMin;
      d.probePosition[1] = unity_SpecCube1_ProbePosition;
    #endif

    if(reflections)
    {
        Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup(s.smoothness, -s.eyeVec, s.normalWorld, s.specColor);
        // Replace the reflUVW if it has been compute in Vertex shader. Note: the compiler will optimize the calcul in UnityGlossyEnvironmentSetup itself
        #if UNITY_STANDARD_SIMPLE
            g.reflUVW = s.reflUVW;
        #endif

        return UnityGlobalIllumination (d, occlusion, s.normalWorld, g);
    }
    else
    {
        return UnityGlobalIllumination (d, occlusion, s.normalWorld);
    }
}

FragmentGI函数处理根据UnityGIInput,其中UnityGIInput也是结构体。开始时候对UnityGIInput进行赋值。即是灯光+世界空间顶点坐标+观察方向(视线的反方向)+衰减直接赋值即可。随后是光照贴图,在启用了静态光照贴图或者动态光照贴图的情况下,环境光为0,然后获得光照贴图的UV。否则的话,ambient直接使用VertexGIForward计算的rgb值。
后面是对反射探针的计算。
对是否反射调用合适 UnityGlobalIllumination函数。

struct UnityGIInput
{
    UnityLight light; // pixel light, sent from the engine

    float3 worldPos;
    half3 worldViewDir;
    half atten;
    half3 ambient;

    // interpolated lightmap UVs are passed as full float precision data to fragment shaders
    // so lightmapUV (which is used as a tmp inside of lightmap fragment shaders) should
    // also be full float precision to avoid data loss before sampling a texture.
    float4 lightmapUV; // .xy = static lightmap UV, .zw = dynamic lightmap UV

    #if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
    float4 boxMin[2];
    #endif
    #ifdef UNITY_SPECCUBE_BOX_PROJECTION
    float4 boxMax[2];
    float4 probePosition[2];
    #endif
    // HDR cubemap properties, use to decompress HDR texture
    float4 probeHDR[2];
};

UnityGlobalIllumination 真正计算GlobalIllumination的函数

在UnityGlobalIllumination.cginc文件里面有四个UnityGlobalIllumination函数,主要是下面的代码。

inline UnityGI UnityGlobalIllumination (UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn)
{
    UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld);
    o_gi.indirect.specular = UnityGI_IndirectSpecular(data, occlusion, glossIn);
    return o_gi;
}

UnityGI_Base函数

inline UnityGI UnityGI_Base(UnityGIInput data, half occlusion, half3 normalWorld)
{
    UnityGI o_gi;
    ResetUnityGI(o_gi);

    // Base pass with Lightmap support is responsible for handling ShadowMask / blending here for performance reason
    #if defined(HANDLE_SHADOWS_BLENDING_IN_GI)
        half bakedAtten = UnitySampleBakedOcclusion(data.lightmapUV.xy, data.worldPos);
        float zDist = dot(_WorldSpaceCameraPos - data.worldPos, UNITY_MATRIX_V[2].xyz);
        float fadeDist = UnityComputeShadowFadeDistance(data.worldPos, zDist);
        data.atten = UnityMixRealtimeAndBakedShadows(data.atten, bakedAtten, UnityComputeShadowFade(fadeDist));
    #endif

    o_gi.light = data.light;
    o_gi.light.color *= data.atten;

    #if UNITY_SHOULD_SAMPLE_SH
        o_gi.indirect.diffuse = ShadeSHPerPixel (normalWorld, data.ambient, data.worldPos);
    #endif

    #if defined(LIGHTMAP_ON)
        // Baked lightmaps
        half4 bakedColorTex = UNITY_SAMPLE_TEX2D(unity_Lightmap, data.lightmapUV.xy);
        half3 bakedColor = DecodeLightmap(bakedColorTex);

        #ifdef DIRLIGHTMAP_COMBINED
            fixed4 bakedDirTex = UNITY_SAMPLE_TEX2D_SAMPLER (unity_LightmapInd, unity_Lightmap, data.lightmapUV.xy);
            o_gi.indirect.diffuse = DecodeDirectionalLightmap (bakedColor, bakedDirTex, normalWorld);

            #if defined(LIGHTMAP_SHADOW_MIXING) && !defined(SHADOWS_SHADOWMASK) && defined(SHADOWS_SCREEN)
                ResetUnityLight(o_gi.light);
                o_gi.indirect.diffuse = SubtractMainLightWithRealtimeAttenuationFromLightmap (o_gi.indirect.diffuse, data.atten, bakedColorTex, normalWorld);
            #endif

        #else // not directional lightmap
            o_gi.indirect.diffuse = bakedColor;

            #if defined(LIGHTMAP_SHADOW_MIXING) && !defined(SHADOWS_SHADOWMASK) && defined(SHADOWS_SCREEN)
                ResetUnityLight(o_gi.light);
                o_gi.indirect.diffuse = SubtractMainLightWithRealtimeAttenuationFromLightmap(o_gi.indirect.diffuse, data.atten, bakedColorTex, normalWorld);
            #endif

        #endif
    #endif

    #ifdef DYNAMICLIGHTMAP_ON
        // Dynamic lightmaps
        fixed4 realtimeColorTex = UNITY_SAMPLE_TEX2D(unity_DynamicLightmap, data.lightmapUV.zw);
        half3 realtimeColor = DecodeRealtimeLightmap (realtimeColorTex);

        #ifdef DIRLIGHTMAP_COMBINED
            half4 realtimeDirTex = UNITY_SAMPLE_TEX2D_SAMPLER(unity_DynamicDirectionality, unity_DynamicLightmap, data.lightmapUV.zw);
            o_gi.indirect.diffuse += DecodeDirectionalLightmap (realtimeColor, realtimeDirTex, normalWorld);
        #else
            o_gi.indirect.diffuse += realtimeColor;
        #endif
    #endif

    o_gi.indirect.diffuse *= occlusion;
    return o_gi;
}

ShadowMask阴影的衰减(烘焙阴影和实时阴影混合),SH的计算,烘焙的lightmap,平行光与非平行光lightmap,动态lightmap。最终返回UnityGI结构,该结构包含light,color,indirect.diffuse参数。
其中ShadowMask阴影遮罩是Unity5.6版本的新特性。

UnityGI_IndirectSpecular 函数 间接高光

inline half3 UnityGI_IndirectSpecular(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn)
{
    half3 specular;

    #ifdef UNITY_SPECCUBE_BOX_PROJECTION
        // we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirection
        half3 originalReflUVW = glossIn.reflUVW;
        glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]);
    #endif

    #ifdef _GLOSSYREFLECTIONS_OFF
        specular = unity_IndirectSpecColor.rgb;
    #else
        half3 env0 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn);
        #ifdef UNITY_SPECCUBE_BLENDING
            const float kBlendFactor = 0.99999;
            float blendLerp = data.boxMin[0].w;
            UNITY_BRANCH
            if (blendLerp < kBlendFactor)
            {
                #ifdef UNITY_SPECCUBE_BOX_PROJECTION
                    glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]);
                #endif

                half3 env1 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1,unity_SpecCube0), data.probeHDR[1], glossIn);
                specular = lerp(env1, env0, blendLerp);
            }
            else
            {
                specular = env0;
            }
        #else
            specular = env0;
        #endif
    #endif

    return specular * occlusion;
}

UnityGI_IndirectSpecular(UnityGLobalIllumination.cginc)计算间接高光,用probe相关的属性计算。
通过调用Unity_GlossyEnvironment采样Reflection Cube,计算HDR。
如果启用了Box Projection,则通过BoxProjectedCubemapDirection计算变换后的方向。

UNITY_BRDF_PBS 里面用到的GlobalIllumination

关于BRDF部分,来看下UnityStandardBRDF.cginc 里面的 BRDF1_Unity_PBS函数

    half3 color =   diffColor * (gi.diffuse + light.color * diffuseTerm)
                    + specularTerm * light.color * FresnelTerm (specColor, lh)
                    + surfaceReduction * gi.specular * FresnelLerp (specColor, grazingTerm, nv);

light的颜色和 diffuse,以及specular 是GlobalIllumination传进来的。

Image Based Lighting (IBL)

其中在材质上反应出周围的环境也是PBS的重要组成部分。在光照模型中一般把周围的环境当作一个大的光源来对待,不过环境光不同于实时光,而是作为间接光(indirect light)通过IBL( Image Based Lighting)来实现。这里也是优化Standard shader的一个比较重要的原因。

IBL一般通过环境光贴图(environment map)来实现。Unity用reflection probe来保存环境光贴图,通过内置变量unity_SpecCube0,unity_SpecCube1访问。
IBL就是采样两次,用粗糙度做插值。这个地方可以做些优化。

你可能感兴趣的:(Untiy,unity-shader,unity3d)