- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 3516cv610的aiisp效果
张海森_168820
音视频
3516cv610的aiisp效果1.图像增强(AI+ISP协同)亮点:动态范围提升(AIHDR):比纯ISP的线性HDR更自然,减少鬼影;智能降噪(AINR):在低照/夜间噪点压制更干净,纹理保留好;颜色还原:色彩更接近人眼感知,尤其在人脸区域处理更出色;AI自动曝光/白平衡:识别场景特征(如人脸、车牌)优先调整曝光区域,实际效果更“智能”;适用场景:人脸识别入口、夜视监控、强背光场景示例提升前
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- Google 相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破
观熵
影像技术全景图谱:架构调优与实战数码相机影像Camera
Google相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破关键词:GCam、GoogleCamera、HDR+、SuperResZoom、Camera2API、多帧合成、算法流程、图像增强、夜视模式、Pixel相机移植摘要:GCam(GoogleCamera)作为Pixel系列设备图像质量表现的核心支撑,其背后的增强框架融合了Google长期积累的计算摄影技术,从HDR+到Sup
- 海思Hi3519DV500方案1200万无人机吊舱套板
weixin_Todd_Wong2010
嵌入式硬件AI前端边缘计算图像处理
海思Hi3519DV500方案1200万无人机吊舱套板Hi3519DV500是一颗面向行业市场推出的超高清智能网络摄像头SoC。该芯片最高支持四路sensor输入,支持最高4K@30fps的ISP图像处理能力,支持2FWDR、多级降噪、六轴防抖、全景拼接、多光谱融合等多种传统图像增强和处理算法,支持通过AI算法对输入图像进行实时降躁等处理,为用户提供了卓越的图像处理能力,集成了高效的神经网络推理引
- 医学图像增强的层级化模糊与虚拟仪器无参考质量评价研究【附代码】
拉勾科研工作室
计算机视觉图像处理人工智能
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)层级模糊隶属度的X光医学图像增强算法针对X光医学图像普遍存在的对比度差、细节模糊等问题,本算法提出了一种基于层级模糊隶属度的增强方法。该方法的核心思想在于利用拉普拉斯金字塔分解图像,并在多尺度下分层计算模糊隶属度
- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 鸿蒙系统下的多线程图像采集与缓冲设计:稳定性与实时性的架构实战
观熵
影像技术全景图谱:架构调优与实战harmonyos架构华为影像Camera
鸿蒙系统下的多线程图像采集与缓冲设计:稳定性与实时性的架构实战关键词:OpenHarmony、CameraKit、多线程采集、图像缓冲队列、图像帧丢失、线程池调度、帧同步机制、缓存池管理摘要:在基于OpenHarmony的图像智能系统中,稳定、高效的图像采集机制是所有后续处理(如目标识别、图像增强、视觉导航等)的基础。随着图像分辨率提高、AI模型数量增加,单线程采集架构在实际部署中易出现帧阻塞、缓
- LabVIEW工业指针仪表检测
LabVIEW开发
LabVIEW开发案例labview深度学习LabVIEW开发案例
用LabVIEW融合深度学习与机器视觉技术,构建适用于复杂工业环境的多类指针式仪表自动检测系统。通过集成品牌硬件与优化算法架构,实现仪表实时定位、图像增强、示数读取全流程自动化,解决传统人工巡检效率低、误差大的问题,满足煤矿、变电站等场景的智能化监测需求。应用场景工业设备监控:煤矿通风设备压力表、变电站电压电流表、集气站流量仪表等圆形指针式设备的实时状态监测。恶劣环境检测:适用于高温、高压、粉尘或
- Python编程:图像增强
倔强老吕
C++与python交互编程pythonopencv计算机视觉图像增强
图像增强图像增强是数字图像处理中的重要技术,旨在改善图像质量或突出图像中的有用信息,为后续的分析和处理提供更好的基础。空间域图像增强灰度变换定义灰度变换是一种点处理(pointprocessing)操作,可表示为:s=T(r)其中:r:输入图像像素的原始灰度值(通常范围[0,L-1],如8位图像为[0,255])s:变换后的输出灰度值T:灰度变换函数核心特性单像素操作:输出值仅取决于对应位置的输入
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)
点云SLAM
图形图像处理深度学习计算机视觉图像分割图像增强CVPR2024人工智能
1、ImageProgress(图像处理)去鬼影GeneratingContentforHDRDeghostingfromFrequencyView去阴影HomoFormer:HomogenizedTransformerforImageShadowRemoval去模糊UnsupervisedBlindImageDeblurringBasedonSelf-EnhancementLatencyCorr
- C#版Halcon:HalconDotNet最详细最全面教程(万字详细总结)
0仰望星空007
C#计算机视觉HalconHalconDotNet
文章目录第一部分:Halcon基础1.Halcon简介Halcon的安装和配置2.Halcon界面和工具图像显示窗口的使用3.图像处理基础图像的表示和存储图像的基本操作4.图像预处理图像增强技术图像去噪方法图像二值化第二部分:Halcon进阶5.形态学操作腐蚀和膨胀开运算和闭运算形态学梯度6.特征提取边缘检测角点检测区域特征第三部分:Halcon高级应用7.模板匹配基于形状的模板匹配基于灰度的模板
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 学习笔记丨数字信号处理(DSP)的应用——图像处理篇
棱镜研途
学习笔记信号处理图像处理人工智能
DSP在图像处理中的应用:核心技术解析数字信号处理(DSP)是图像处理的核心技术之一,广泛应用于增强、压缩、分析和识别等领域。以下是DSP在图像处理中的关键应用及技术细节:目录图像增强(ImageEnhancement)图像压缩(ImageCompression)特征提取(FeatureExtraction)实时图像处理(Real-TimeProcessing)多模态图像融合(Multimodal
- 使用 Simulink + MATLAB Function Block + Computer Vision Toolbox 实现一个基于多帧图像融合的低光图像增强系统仿真模型
amy_mhd
计算机视觉人工智能
目录图像增强与复原(ImageEnhancement&Restoration)场景实例:多帧图像融合技术用于低光环境下的图像增强一、目标与应用场景✅目标:✅应用场景:二、所需工具和环境三、核心技术原理多帧图像融合流程:四、Simulink实现步骤详解✅步骤1:准备图像数据✅步骤2:创建Simulink模型✅步骤3:添加多帧图像输入模块添加模块:函数代码(getFrames.m):✅步骤4:设计图像
- 水下图像增强(UIE)当前SOTA方法代码分享
石头192
人工智能python水下图像增强图像增强
所有方法均提供源代码和在三个公开数据集(RUIE,LSUI,UIEB)上的复现实验结果,私信可以获得任意水下数据集实验结果。1.U-shape_Transformer_for_Underwater_Image_Enhancement-main2.FUnIE-GAN-master3.Ucolor_final_model_corrected4.UDnet-main5.Water_Net-code_py
- HALCON学习笔记(四)——图像增强
weixin_45482443
HALCON学习笔记计算机视觉
图像增强:有目的的强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同特征之间的差别,抑制不感兴趣特征,改善图像质量,丰富信息量,满足分析需要。1.图像增强的概念和分类图像增强技术基本分为两类:空间域法:包含图像像素的空间,在空间域中,直接对图像进行各种线性或非线性运算,对图像的像素灰度做增强处。分为点运算(作用于像素领域的处理方法,包括灰度变换,直方图修正,
- 计算机视觉与深度学习 | 低照度图像增强算法综述(开源链接,原理,公式,代码)
单北斗SLAMer
低照度图像增强低照度图像处理计算机视觉算法
低照度图像增强算法综述1算法分类与原理1.1传统方法1.2深度学习方法2核心算法详解2.1多尺度Retinex(MSRCR)实现2.2SCI自校准光照学习2.3自适应伽马校正2.4WaveletMamba架构3开源资源与实现3.1主流算法开源库3.2关键代码实现4评估与实验对比4.1客观评价指标4.2算法性能对比5未来研究方向全面综述低照度图像增强算法,包括开源链接、原理、公式和代码实现。主要内容
- erdas图像增强步骤_基于erdas的图像增强处理
weixin_39953618
erdas图像增强步骤
《基于erdas的图像增强处理》由会员分享,可在线阅读,更多相关《基于erdas的图像增强处理(9页珍藏版)》请在人人文库网上搜索。1、图像增强处理l实习目的:掌握常用的图像增强处理的方法l内容:空间、辐射、光谱增强处理的主要方法空间增强:包括卷积增强处理、纹理分析辐射增强:LUT拉伸处理、直方图均衡化处理光谱增强:主成份变换、缨穗变换、色彩变换图像增强处理包括空间、辐射、光谱增强处理,本练习做几
- 图像处理 | 基于matla的多尺度Retinex(MSR)和自适应直方图均衡化(CLAHE)算法联合的低照度图像增强(附代码)
单北斗SLAMer
图像处理算法人工智能低照度图像增强
低照度图像增强1、算法原理2、代码实现3、关键步骤说明4、效果5、扩展建议6、原图7、结果1、算法原理2、代码实现functionenhanced_img=MSR_CLAHE_Enhancement(img_path)%读取图像img=imread(img_path
- nnUNet V2代码——图像增强(三)
w1ndfly
阅读nnUNetV2代码图像增强计算机视觉nnunet机器学习深度学习人工智能图像增强
本文阅读的nnU-NetV2图像增强有亮度调整、对比度调整、低分辨率调整各个类内的各个函数的调用关系见前文nnUNetV2代码——图像增强(一)的BasicTransform类安装batchgeneratorsv2,nnU-NetV2关于图像增强的代码都在这个库中,点击链接,将其clone到本地后,在命令行进入文件夹内,pipinstall-e.即可(注意-e后有个点)。本文目录一Multipli
- nnUNet V2代码——图像增强(一)
w1ndfly
图像增强阅读nnUNetV2代码计算机视觉机器学习深度学习人工智能nnunetnnU-NetV2nnUNet
本文目录nnUNetV2使用的图像增强方法各个图像增强代码1.BasicTransform2.SpatialTransform__init__函数get_parameters函数_apply_to_image函数_apply_to_segmentation函数其余函数nnUNetV2使用的图像增强方法nnUNetV2会依照概率依次对图像应用以下图像增强方法:代码-类名对应图像增强方法Spatial
- 【OpenCV】cv::exp函数详解
浩瀚之水_csdn
#OpenCV学习opencv人工智能计算机视觉
cv::exp是OpenCV中用于对矩阵中的每个元素进行自然指数运算(即ex)的函数,常用于图像增强、概率计算或机器学习中的激活函数(如Softmax)。以下是详细解析:函数原型voidcv::exp(InputArraysrc,OutputArraydst);参数说明:src:输入矩阵(CV_32F或CV_64F类型)。dst:输出矩阵,大小和通道数与src相同,数据类型自动匹配为CV_32F或
- 独家首发!低照度环境下YOLOv8的增强方案——从理论到TensorRT部署
向哆哆
YOLO架构yolov8
文章目录引言一、低照度图像增强技术现状1.1传统低照度增强方法局限性1.2深度学习-based方法进展二、Retinexformer网络原理2.1Retinex理论回顾2.2Retinexformer创新架构2.2.1光照感知Transformer2.2.2多尺度Retinex分解2.2.3自适应特征融合三、YOLOv8-Retinexformer实现3.1网络架构修改3.2联合训练策略四、实验与
- 24 年第十四届APMCM亚太数模竞赛浅析
小何数模
数学建模
本次万众瞩目的APMCM亚太地区大学生数学建模赛题已正式出炉,无论是赛题难度还是认可度,该比赛都是数模届的独一档,含金量极高,可以用于综测加分、保研、简历添彩等各方面。考虑到大家解题实属不易,为了帮助大家取得好成绩,在APMCM亚太建模中夺得国奖,下面学长就赛题给出个人浅析,供大家参考!从赛题难度来看,个人认为赛题难度从难到易依次为:D题>A题>B题>C题首先是A题:复杂场景下水下图像增强技术的研
- 图像增强利器:一站式Matlab代码解决方案
岑童嵘
图像增强利器:一站式Matlab代码解决方案增强.zip项目地址:https://gitcode.com/open-source-toolkit/206fb在数字图像处理的世界里,高质量的图像增强技术是通往视觉清晰度的关键之门。今天,我们要向您隆重推荐一个精心打造的开源宝藏——《图像增强Matlab代码合集》,这是一份专为加速研究和学习曲线而生的资源,旨在让每一位图像处理爱好者和专业人员都能轻松掌
- 【图像处理入门】4. 图像增强技术——对比度与亮度的魔法调节
小米玄戒Andrew
图像处理:从入门到专家图像处理算法计算机视觉模式识别几何变换图像增强
摘要图像增强是改善图像视觉效果的核心技术。本文将详解两种基础增强方法:通过直方图均衡化拉伸对比度,以及利用伽马校正调整非线性亮度。结合OpenCV代码实战,学会处理灰度图与彩色图的不同增强策略,理解为何彩色图像需在YUV空间操作亮度通道,为后续滤波与边缘检测奠定预处理基础。一、图像增强:让模糊图像「重获新生」为什么需要图像增强?改善视觉效果:让低对比度图像更清晰(如老照片修复)提升后续处理效果:增
- OpenCV 第7课 图像处理之平滑(一)
嵌入式老牛
树莓派之OpenCVopencv图像处理计算机视觉
1.图像噪声在采集、处理和传输过程中,数字图像可能会受到不同噪声的干扰,从而导致图像质量降低、图像变得模糊、图像特征被淹没,而图像平滑处理就是通过除去噪声来达到图像增强的目的。常见的图像噪声有椒盐噪声、高斯噪声等。1.1椒盐噪声椒盐噪声(Salt-and-pepperNoise)也称为脉冲噪声,是一种随机出现的白点或黑点,具体表现为亮的区域有黑色像素,或是暗的区域有白色像素,又或是两者皆有。下面左
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默