http://cn.mathworks.com/examples/matlab-computer-vision/mw/vision_product-FeatureBasedPanoramicImageStitchingExample-feature-based-panoramic-image-stitching
在机器视觉应用领域里特征检测和匹配是一个很重要的算法,比如图像配准、跟踪和目标检测。这个例子里,我们用基于特征的方法完成图像拼接。处理的方法是先用图像配准特征点。不同于单图像对配准,这里是多图像对的配准完成图像拼接。
% 以图像集的方法加载图片
buildingDir = fullfile(toolboxdir('vision'), 'visiondata', 'building');
buildingScene = imageSet(buildingDir);
% 显示要拼接的所有图片
montage(buildingScene.ImageLocation)
使用下面的步骤来进行图像对配准操作。
计算I(n)在全景图里的变换T(1)*…*T(n-1)*T(n).
% 从图片集中读取第一幅图像
I = read(buildingScene, 1);
% 将图像转为灰度图,再提取I(1)的特征点,用的是surf算法。
grayImage = rgb2gray(I);
points = detectSURFFeatures(grayImage);
[features, points] = extractFeatures(grayImage, points);
% 初始化所有变换的恒等矩阵。
tforms(buildingScene.Count) = projective2d(eye(3));
% Iterate over remaining image pairs
for n = 2:buildingScene.Count
% Store points and features for I(n-1).
% 存储前一图像的特征点坐标和值。
pointsPrevious = points;
featuresPrevious = features;
% Read I(n).
% 读取第n张图片。
I = read(buildingScene, n);
% Detect and extract SURF features for I(n).
%检测和提取surf特征值。
grayImage = rgb2gray(I);
points = detectSURFFeatures(grayImage);
[features, points] = extractFeatures(grayImage, points);
% 匹配I(n)和I(n-1)之间对应的特征点
indexPairs = matchFeatures(features, featuresPrevious, ‘Unique’, true);
matchedPoints = points(indexPairs(:,1), :);
matchedPointsPrev = pointsPrevious(indexPairs(:,2), :);
% 用MSAC算法计算几何变化。
tforms(n) = estimateGeometricTransform(matchedPoints, matchedPointsPrev,…
‘projective’, ‘Confidence’, 99.9, ‘MaxNumTrials’, 2000);
% 计算T(1) * … * T(n-1) * T(n)
tforms(n).T = tforms(n-1).T * tforms(n).T;
end
这里,所有tforms的变换都是相对于第一幅图像的。主要是为了方便图像配准处理代码,这样就可以对所有图像连续处理。但是,用第一张图像做为全景图配准的起点,不能得到最佳的效果,原因是它会把全景图所有的图像都发生畸变。将变换式用中间的场景可以创建比较好的全景图,畸变也最小。
先用projective2d outputLimits
方法查找每个变换输出的极限。输出极限再用来自动查找中间场景图像的轮廓。
imageSize = size(I); % 所有的图像尺寸都是一样的
% 对每个投影变化找到输出的空间坐标限制值。
for i = 1:numel(tforms)
[xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(2)], [1 imageSize(1)]);
end
接着,计算每个变换X极限的平均值,找到中间的图像。只用X方向上的极限是由于场景为水平方向上的。如果有其他的图像,X和Y方向上的极限都应当用来查找中心图像。
avgXLim = mean(xlim, 2);
[~, idx] = sort(avgXLim);
centerIdx = floor((numel(tforms)+1)/2);
centerImageIdx = idx(centerIdx);
最后,将中心图像的反变换应用到所有的图像变换中。
Tinv = invert(tforms(centerImageIdx));
for i = 1:numel(tforms)
tforms(i).T = Tinv.T * tforms(i).T;
end
接下来,创建一个空的全景图用来存放所有图像。
用outputLimits
方法计算所有变换中最小和最大输出限制。这个值用来计算全景图的大小。
for i = 1:numel(tforms)
[xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(2)], [1 imageSize(1)]);
end
% 找到输出空间限制的最大最小值
xMin = min([1; xlim(:)]);
xMax = max([imageSize(2); xlim(:)]);
yMin = min([1; ylim(:)]);
yMax = max([imageSize(1); ylim(:)]);
% 全景图的宽高
width = round(xMax - xMin);
height = round(yMax - yMin);
% 生成空数据的全景图
panorama = zeros([height width 3], 'like', I);
用imwarp
将图像映射到全景图中,再用vision.AlphaBlender
将图像重叠起来。
blender = vision.AlphaBlender('Operation', 'Binary mask', ...
'MaskSource', 'Input port');
% Create a 2-D spatial reference object defining the size of the panorama.
xLimits = [xMin xMax];
yLimits = [yMin yMax];
panoramaView = imref2d([height width], xLimits, yLimits);
% Create the panorama.
for i = 1:buildingScene.Count
I = read(buildingScene, i);
% Transform I into the panorama.
warpedImage = imwarp(I, tforms(i), 'OutputView', panoramaView);
% Overlay the warpedImage onto the panorama.
panorama = step(blender, panorama, warpedImage, warpedImage(:,:,1));
end
figure
imshow(panorama)
这个例子展示了如何使用图像配准方法创建全景图。附录包含了图像融合和对齐的全景图拼接改进方法。
[1] Matthew Brown and David G. Lowe. 2007. Automatic Panoramic Image Stitching using Invariant Features. Int. J. Comput. Vision 74, 1 (August 2007), 59-73.