我在阅读 《Effective C++ (第三版本)》 书时做了不少笔记,从中收获了非常多,也明白为什么会书中前言的第一句话会说:
对于书中的「条款」这一词,我更喜欢以「细节」替换,毕竟年轻的我们在打 LOL 或 王者的时,总会说注意细节!细节!细节~ —— 细节也算伴随我们的青春的字眼
针对书中的前两个章节,我筛选了 10 个 细节(条款)作为了本文的内容,这些细节也相对基础且重要。
针对这 10 细节我都用较简洁的例子来加以阐述,同时也把本文所提及细节中的「小结」总结绘画成了一副思维导图,便于大家的阅读。
后续有时间也会继续分享后面章节的笔记,喜欢的小伙伴「点击左上角」关注我~
温馨提示:本文较长,建议收藏阅读。
#define 定义的常量有什么不妥?
首先我们要清楚程序的编译重要的三个阶段:预处理阶段,编译阶段和链接阶段。
#define
是不被视为语言的一部分,它在程序编译阶段中的预处理阶段的作用,就是做简单的替换。
如下面的 PI
宏定义,在程序编译时,编译器在预处理阶段时,会先将源码中所有 PI
宏定义替换成 3.14
:
#define PI 3.14
程序编译在预处理阶段后,才进行真正的编译阶段。在有的编译器,运用了此 PI
常量,如果遇到了编译错误,那么这个错误信息也许会提到 3.14 而不是 PI,这就会让人困惑哪里来的3.14
,特别是在项目大的情况下。
解决之道:以 const 定义一个常量替换上述的宏(#define)
作为一个语言变量,下面的 const 定义的常量 Pi
肯定会被编译器看到,出错的时候可以很清楚知道,是这个变量导致的问题:
const doule Pi = 3.14;
如果是定义常量字符串,则必须要 const
两次,目的是为了防止指针所指内容和指针自身不能被改变:
const char* const myName = "小林coding";
如果是定义常量 string
,则只需要在最前面加一次 const
,形式如下:
const std::string myName("小林coding");
#define 不重视作用域,所以对于 calss 的专属常量,应避免使用宏定义。
还有另外一点宏无法涉及的,就是我们无法利用 #define
创建一个 class
专属常量,因为 #define
并不重视作用域。
对于类里要定义专属常量时,我们依然使用 static
+ const
,形式如下:
class Student {
private:
static const int num = 10;
int scores[num];
};
const int Student::num; // static 成员变量,需要进行声明
如果不想外部获取到 class 专属常量的内存地址,可以使用 enum 的方式定义常量
enum
会帮你约束这个条件,因为取一个 enum
的地址是不合法的,形式如下:
class Student {
private:
enum { num = 10 };
int scores[num];
};
#define 实现的函数容易出错,并且长相丑陋不易阅读。
另外一个常见的 #define
误用情况是以它实现宏函数,它不会招致函数调用带来的开销,但是用 #define
编写宏函数容易出错,如下用宏定义写的求最大值的函数:
#define MAX(a, b) ( { (a) > (b) ? (a) : (b); } ) // 求最大值
这般长相的宏有着太的缺点,比如在下面调用例子:
int a = 6, b = 5;
int max = MAX(a++, b);
std::cout << max << std::endl;
std::cout << a << std::endl;
输出结果(以下结果是错误的):
7 // 正确的答案是 max 输出 6
8 // 正确的答案是 a 输出 7
要解释出错的原因很简单,我们把 MAX
宏做简单替换:
int max = ( { (a++) > (b) ? (a++) : (b); } ); // a 被累加了2次!
在上述替换后,可以发现 a
被累加了 2 次。我们可以通过改进 MAX
宏,来解决这个问题:
#define MAX(a, b) ({ \
__typeof(a) __a = (a), __b = (b); \
__a > __b ? __a : __b; \
})
简单说明下,上述的 __typeof
可以根据变量的类型来定义一个相同类型的变量,如 a
变量是 int 类型,那么 __a
变量的类型也是 int 类型。改进后的 MAX
宏,输出的是正确的结果,max 输出 6,a 输出 7。
虽然改进的后 MAX
宏,解决了问题,但是这种宏的长相就让人困惑。
解决的方式:用 inline 替换 #define 定义的函数
用 inline
修饰的函数,也是可以解决函数调用的带来的开销,同时阅读性较高,不会让人困惑。
下面用用 template inline 的方式,实现上述宏定义的函数::
template<typename T>
inline T max(const T& a, const T& b)
{
return a > b? a : b;
}
max
是一个真正的函数,它遵循作用域和访问规则,所以不会出现变量被多次累加的现象。
模板的基础知识内存,可移步到我的旧文进行学习 --> 泛型编程的第一步,掌握模板的特性!
细节 01 小结 - 请记住
const 的一件奇妙的事情是:它允许你告诉编译器和其他程序员某值应该保持不变。
1. 面对指针,你可以指定指针自身、指针所指物,或两者都(或都不)是 const:
char myName[] = "小林coding";
char *p = myName; // non-const pointer, non-const data
const char* p = myName; // non-const pointer, const data
char* const p = myName; // const pointer, non-const data
const char* const p = myName; // const pointer, const data
*
)左边,表示指针所指物是常量(不能改变 *p 的值);*
)右边,表示指针自身是常量(不能改变 p 的值);*
)两边,表示指针所指物和指针自身都是常量;2. 面对迭代器,你也指定迭代器自身或自迭代器所指物不可被改变:
std::vector<int> vec;
const std::vector<int>::iterator iter = vec.begin(); // iter 的作用像 T* const
*iter = 10; // 没问题,可以改变 iter 所指物
++iter; // 错误! 因为 iter 是 const
std::vector<int>::const_iterator cIter = vec.begin(); // cIter 的作用像 const T*
*cIter = 10; // 错误! 因为 *cIter 是 const
++cIter; // 没问题,可以改变 cIter
const
即可(即声明一个 T* const
指针); —— 这个不常用const_iterator
(即声明一个 const T*
指针)。—— 这个常用const 最具有威力的用法是面对函数声明时的应用。在一个函数声明式内,const 可以和函数返回值、各参数、成员函数自身产生关联。
1. 令函数返回一个常量值,往往可以降低因程序员错误而造成的意外。举个例子:
class Rational { ... };
const Rational operator* (const Rational& lhs, const Rational& rhs);
为什么要返回一个 const
对象呢?原因是如果不这样,程序员就能实现这一的暴力行为:
Rational a, b, c;
if (a * b = c) ... // 做比较时,少了个等号
如果 operator*
返回的 const
对象,可以预防这个没意义的赋值动作。
2. 将 const
实施于成员函数的目的,是为了确认该成员函数可作用于 const
对象。理由如下两个:
理由 1 :
它们使得 class
接口比较容易理解,因为可以得知哪个函数可以改动对象而哪些函数不行,见如下例子:
class MyString
{
public:
const char& operator[](std::size_t position) const // operator[] for const 对象
{ return text[position]; }
char& operator[](std::size_t position) // operator[] for non-const 对象
{ return text[position]; }
private:
std::string text;
};
MyString 的 operator[]
可以被这么使用:
MyString ms("小林coding"); // non-const 对象
std::cout << ms[0]; // 调用 non-const MyString::operator[]
ms[0] = 'x'; // 没问题,写一个 non-const MyString
const MyString cms("小林coding"); // const 对象
std::cout << cms[0]; // 调用 const MyString::operator[]
cms[0] = 'x'; // 错误! 写一个 const MyString
注意,上述第 7 行会出错,原因是 cms
是 const 对象,调用的是函数返回值为 const 类型的 operator[]
,我们是不可以对 const 类型的变量或变量进行修改的。
理由 2 :
它们使操作 const 对象成为可能,这对编写高效代码是个关键,因为改善 C++ 程序效率的一个根本的方法是以 pass by referenc-to-const(const T& a) 方式传递对象,见如下例子:
class MyString
{
public:
MyString(const char* str) : text(str)
{
std::cout << "构造函数" << std::endl;
}
MyString(const MyString& myString)
{
std::cout << "复制构造函数" << std::endl;
(*this).text = myString.text;
}
~MyString()
{
std::cout << "析构函数" << std::endl;
}
bool operator==(MyString rhs) const // pass by value 按值传递
{
std::cout << "operator==(MyString rhs) pass by value" << std::endl;
return (*this).text == rhs.text;
}
private:
std::string text;
};
operator==
函数是 pass by value, 也就是按值传递,我们使用它,看下会输出什么:
int main()
{
std::cout << "main()" << std::endl;
MyString ms1("小林coding");
MyString ms2("小林coding");
std::cout << ( ms1 == ms2) << std::endl; ;
std::cout << "end!" << std::endl;
return 0;
}
输出结果:
main()
构造函数
构造函数
复制构造函数
operator==(MyString rhs) pass by value
1
析构函数
end!
析构函数
析构函数
可以发现在进入 operator==
函数时,发生了「复制构造函」,当离开该函数作用域后发生了「析构函数」。说明「按值传递」,在进入函数时,会产生一个副本,离开作用域后就会消耗,说明这里是存在开销的。
我们把 operator==
函数改成 pass by referenc-to-const 后,可以减少上面的副本开销:
bool operator==(const MyString& rhs)
{
std::cout << "operator==(const MyString& rhs)
pass by referenc-to-const" << std::endl;
return (*this).text == rhs.text;
}
再次输出的结果:
main()
构造函数
构造函数
operator==(const MyString& rhs) pass by referenc-to-const
1
end!
析构函数
析构函数
没有发生复制构造函数,说明 pass by referenc-to-const 比 pass by value 性能高。
在 const 和 non-const 成员函数中避免代码重复
假设 MyString 内的 operator[] 在返回一个引用前,先执行边界校验、打印日志、校验数据完整性。把所有这些同时放进 const 和 non-const operator[]中,就会导致代码存在一定的重复:
class MyString
{
public:
const char& operator[](std::size_t position) const
{
... // 边界检查
... // 日志记录
... // 校验数据完整性
return text[position];
}
char& operator[](std::size_t position)
{
... // 边界检查
... // 日志记录
... // 校验数据完整性
return text[position];
}
private:
std::string text;
};
可以有一种解决方法,避免代码的重复:
class MyString
{
public:
const char& operator[](std::size_t position) const // 一如既往
{
... // 边界检查
... // 日志记录
... // 校验数据完整性
return text[position];
}
char& operator[](std::size_t position)
{
return const_cast<char&>(
static_cast<const MyString&>(*this)[position]
);
}
private:
std::string text;
};
这份代码有两个转型动作:
static_cast(*this)[position]
,表示将 MyString& 转换成 const MyString&,可让其调用 const operator[] 兄弟;const_cast( ... )
,表示将 const char & 转换为 char &,让其是 non-const operator[] 的返回类型。虽然语法有一点点奇特,但「运用 const 成员函数实现 non-const 孪生兄弟 」的技术是值得了解的。
需要注意的是:我们可以在 non-const 成员函数调用 const 成员函数,但是不可以反过来,在 const 成员函数调用 non-const 成员函数调用,原因是对象有可能因此改动,这会违背了 const 的本意。
细节 02 小结 - 请记住
内置类型初始化
如果你这么写:
int x;
在某些语境下 x 保证被初始化为 0,但在其他语境中却不保证。那么可能在读取未初始化的值会导致不明确的行为。
为了避免不确定的问题,最佳的处理方法就是:永远在使用对象之前将它初始化。 例如:
int x = 0; // 对 int 进行手工初始化
const char* text = "abc"; // 对指针进行手工初始化
构造函数初始化
对于内置类型以外的任何其他东西,初始化责任落在构造函数。
规则很简单:确保每一个构造函数都将对象的每一个成员初始化。但是别混淆了赋值和初始化。
考虑用一个表现学生的class,其构造函数如下:
class Student {
public:
Student(int id, const std::string& name, const std::vector<int>& score)
{
m_Id = id; // 这些都是赋值
m_Name = name; // 而非初始化
m_Score = score;
}
private:
int m_Id;
std::string m_Name;
std::vector<int> m_Score;
};
上面的做法并非初始化,而是赋值,这不是最佳的做法。因为 C++ 规定,对象的成员变量的初始化动作发生在进入构造函数本体之前,在构造函数内,都不算是被初始化,而是被赋值。
初始化的写法是使用成员初值列,如下:
Student(int id,
const std::string &name,
const std::vector<int> &score)
: m_Id(id),
m_Name(name), // 现在,这些都是初始化
m_Score(score)
{} // 现在,构造函数本体不必有任何动作
这个构造函数和上一个构造函数的最终结果是一样的,但是效率较高,凸显在:
m_Name
和 m_Score
对象的默认构造函数作为初值,然后在构造函数体内立刻再对它们进行赋值操作,这期间经历了两个步骤。m_Name
以 name
为初值进行复制构造,m_Score
以 score
为初值进行复制构造。另外一个注意的是初始化次序(顺序),初始化次序(顺序):
m_Id
先被初始化,再是 m_Name
,最后是 m_Score
,否则会出现编译出错。避免「跨编译单元之初始化次序」的问题
现在,我们关系的问题涉及至少两个以上源码文件,每一个内含至少一个 non-local static 对象。
存在的问题是:如果有一个 non-local static 对象需要等另外一个 non-local static 对象初始化后,才可正常使用,那么这里就需要保证次序的问题。
下面提供一个例子来对此理解:
class FileSystem
{
public:
...
std::size_t numDisk() const; // 众多成员函数之一
...
};
extern FileSystem tfs; // 预备给其他程序员使用对象
现假设另外一个程序员建立一个class 用以处理文件系统内的目录,很自然他们会用上 tfs 对象:
class Directory
{
public:
Directory( params )
{
std::size_t disks = tfs.numDisk(); // 使用 tfs 对象
}
...
};
使用 Directory 对象:
Directory tempDir( params );
那么现在,初始化次序的重要性凸显出来了,除非 tfsd 对象在 tempDir 对象之前被初始化,否则 tempDir 的构造函数会用到尚未初始化的 tfs, 就会出现未定义的现象。
由于 C++ 对「定义于不同的编译单元内的 non-local static 对象」的初始化相对次序并无明确定义。但我们可以通过一个小小的设计,解决这个问题。
唯一需要做的是:将每个 non-local static 对象搬到自己的专属函数内(该对象在此函数内被声明为 static),这些函数返回一个引用指向它所含的对象。
没错也就是单例模式,代码如下:
class FileSystem
{
public:
...
static FileSystem& getTfs() // 该函数作用是获取 tfs 对象,
{
static FileSystem tfs; // 定义并初始化一个 local static 对象,
return tfs; // 返回一个引用指向上述对象。
}
...
};
class Directory
{
public:
...
Directory( params )
{
std::size_t disks = FileSystem::getTfs().numDisk(); // 使用 tfs 对象
}
...
};
这么修改后,Directory 构造函数就会先初始化 tfs 对象,就可以避免次序问题了。虽然内含了 static 对象,但是在 C++11 以上是线程安全的。
细节 03 小结 - 请记住
当你写了如下的空类:
class Student { };
编译器就会它声明,并且这些函数都是 public 且 inline:
就好像你写下这样的代码:
class Student
{
Student() { ... } // 默认构造函数
Student(const Student& rhs) { ... } // 复制构造函数
Student& operator=(const Student& rhs) { ... } // 赋值操作符函数
~Student() { ... } // 析构函数
};
唯有当这些函数被需要调用时,它们才会被编译器创建出来,下面代码造成上述每一个函数被编译器产出:
Student stu1; // 默认构造函数
// 析构函数
Student stu2(stu1); // 复制构造函数
stu2 = stu1; // 赋值操作符函数
编译器为我们写的函数,来说说这些函数做了什么?
编译器拒绝为 class 生出 operator= 的情况
对于赋值操作符函数,只有当生出的代码合法且有适当机会证明它有意义,才会生出 operator=
,若万一两个条件有一个不符合,则编译器会拒绝为 class 生出 operator=
。
举个例子:
template<class T>
class Student
{
public:
Student(std::string & name, const T& id); // 构造函数
... // 假设未声明 operator=
priavte:
std::string& m_Name; // 引用
const T m_Id; // const
};
现考虑下面会发生什么:
std::string name1("小美");
std::string name2("小林");
Student<int> p(name1, 1);
Student<int> s(name2, 2);
p = s; // 现在 p 的成员变量会发生什么?
赋值之前, p.m_Name
和 s.m_Name
都指向 string
对象且不是同一个。赋值之后 p.m_Name
应该指向 s.m_Name
所指的那个 string
吗?也就是说引用自身可被改动吗?如果是,那就开辟了新天地,因为 C++ 并不允许「让引用更改指向不同对象」。
面对这个难题,C++ 的响应是拒绝编译那一行赋值动作,本例子拒绝生成的 operator=
原因如下:
m_Name
)的class 内支持赋值操作,你必须自己定义赋值操作函数,这种情况是编译器不会为你自动生成赋值操作函数的。const
成员」(如本例的 m_Id
)的class,编译器也是会拒绝生成 operator=
,因为更改 const
成员是不合法的。最后还有一个情况:如果某个基类将 operator=
函数声明为 private
,编译器将拒绝为其派生类生成 operator=
函数。
细节 04 小结 - 请记住
在不允许存在一模一样的两个对象的情况下,可以把复制构造函数和赋值操作符函数声明为 private,这样既可防止编译器自动生成这两个函数。如下例子:
class Student
{
public:
...
private:
...
Student(const Student&); // 只有声明
Student& operator=(const Student&); // 只有声明
};
这样的话,Student 对象就无法操作下面的情况了:
Student stu1;
Student stu2(stu1); // 错误,禁用了 复制构造函数
stu2 = stu1; // 错误,禁用了 赋值操作符函数
更容易扩展的解决方式是,可以专门写一个为阻止 copying 动作的基类:
class Uncopyale
{
protect: // 允许派生类对象构造和析构
Uncopyale() {}
~Uncopyale() {}
private: // 禁止派生类对象copying
Uncopyale(const Uncopyale&);
Uncopyale& operater=(const Uncopyale&);
};
使用方式很简单,只需要 private
形式的继承:
class Student : private Uncopyale{
... // 派生类不用再声明复制构造函数和赋值操作符函数
};
那么只要某个类需要禁止 copying 动作,则只需要 private
形式的继承 Uncopyale
基类即可。
细节 05 小结 - 请记住
多态特性的基础内容,可移步到我的旧文进行学习 --> 掌握了多态的特性,写英雄联盟的代码更少啦!
多态性质基类需声明 virtual 析构函数
如果在多态性质的基类,没有声明一个 virtual
析构函数,那么在 delete
基类指针对象的时候,只会调用基类的析构函数,而不会调用派生类的析构函数,这就是存在了泄漏内存和其他资源的情况。
如下有多态性质基类,没有声明一个 virtual
析构函数的例子:
// 基类
class A
{
public:
A() // 构造函数
{
cout << "construct A" << endl;
}
~A() // 析构函数
{
cout << "Destructor A" << endl;
}
};
// 派生类
class B : public A
{
public:
B() // 构造函数
{
cout << "construct B" << endl;
}
~B()// 析构函数
{
cout << "Destructor B" << endl;
}
};
int main()
{
A *pa = new B();
delete pa; // 释放资源
return 0;
}
输出结果:
construct A
construct B
Destructor A
从上面的结果,是发现了在 delete
基本对象指针时,没有调用派生类 B
的析构函数。问题出在 pa
指针指向派生类对象,而那个对象却经由一个基类指针被删除,而目前的基类没有 virtual
析构函数。
消除这个问题的做法很简单:为了避免泄漏内存和其他资源,需要把基类的析构函数声明为 virtual
析构函数。改进如下:
// 基类
class A
{
public:
.... // 如上
virtual ~A() // virtual 析构函数
{
cout << "Destructor A" << endl;
}
};
... // 如上
此后删除派生类对象就会如你想要的那般,是的,它会销毁整个对象,包括所有派生类成份。
非多态性质基类无需声明 virtual 函数
当类的设计目的不是被当做基类,令其析构函数为 virtual
往往是个馊主意。
若类里声明了 virtual
函数,对象必须携带某些信息。主要用来运行期间决定哪一个 virtual
函数被调用。
这份信息通常是由一个所谓 vptr(virtual table pointer —— 虚函数表指针)指针指出。vptr 指向一个由函数指针构成的数组,称为 vtbl(virtual table —— 虚函数表);每一个带有 virtual 函数的类都有一个相应的 vtbl。当对象调用某一 virtual 函数,实际被调用的函数取决于该对象的 vptr 所指向的那个 vtbl,接着编译器在其中寻找适当的函数指针,从而调用对应类的函数。
既然内含 virtual 函数的类的对象必须会携带信息,那么必然其对象的体积是会增加的。
因此,无端地将所有类的析构函数声明为 virtual ,是错误的,原因是会增加不必要的体积。
许多人的心得是:只有当 class 内含至少一个 virtual 函数,才为它声明 virtual 析构函数。
细节 06 小结 - 请记住
我们不该在构造函数和析构函数体内调用 virtual
函数,因为这样的调用不会带来你预想的结果。
我们看如下的代码例子,来说明:
// 基类
class CFather
{
public:
CFather()
{
hello();
}
virtual ~CFather()
{
bye();
}
virtual void hello() // 虚函数
{
cout<<"hello from father"<<endl;
}
virtual void bye() // 虚函数
{
cout<<"bye from father"<<endl;
}
};
// 派生类
class CSon : public CFather
{
public:
CSon() // 构造函数
{
hello();
}
~CSon() // 析构函数
{
bye();
}
virtual void hello() // 虚函数
{
cout<<"hello from son"<<endl;
}
virtual void bye() // 虚函数
{
cout<<"bye from son"<<endl;
}
};
现在,当以下这行被执行时,会发生什么事情:
CSon son;
先列出输出结果:
hello from father
hello from son
bye from son
bye from father
无疑地会有一个 CSon(派生类) 构造函数被调用,但首先 CFather(基类) 构造函数一定会更早被调用。 CFather(基类) 构造函数体力调用 virtual 函数 hello,这正是引发惊奇的起点。这时候被调用的 hello 是 CFather 内的版本,而不是 CSon 内的版本。
说明,基类构造期间 virtual 函数绝不会下降到派生类阶层。取而代之的是,对象的作为就像隶属于基类类型一样。
非正式的说法或许比较传神:在基类构造期间,virtual 函数不是 virtual 函数。
相同的道理,也适用于析构函数。
细节 07 小结 - 请记住
关于赋值,又去的是你可以把它们写成连锁形式:
int x, y, z;
x = y = z = 15; // 赋值连锁形式
同样有趣的是,赋值采用右结合律,所以上述连锁赋值被解析为:
x = (y = ( z = 15 ));
这里 15 先被赋值给 z,然后其结果再被赋值给 y,然后其结果再赋值给 x 。
为了实现「连锁赋值」,赋值操作必须返回一个 reference (引用)指向操作符的左侧实参。这是我们为 classes 实现赋值操作符时应该遵循的协议:
class A
{
public:
...
A& operator=(const A& rhs) // 返回类型是一个引用,指向当前对象。
{
...
return *this; // 返回左侧对象
}
...
};
这个协议不仅适用于以上标准赋值形式,也适用于所有赋值相关运算(+=, -=, *=, 等等),例如:
class A
{
public:
...
A& operator+=(const A& rhs) // 这个协议适用于 +=, -=, *=, 等等。
{
...
return *this;
}
...
};
注意,这只是个协议,并无强制性。如果不遵循它,代码一样可以通过编译,但是会破坏原本的编程习惯。
细节 08 小结 - 请记住
「自我赋值」发生在对象被赋值给自己时:
class A { ... };
A a;
...
a = a; // 赋值给自己
这看起来有点愚蠢,但它合法,所以不要认定我们自己绝对不会那么做。
此外赋值动作并不总是那么一眼被识别出来,例如:
a[i] = a[j]; // 潜在的自我赋值
如果 i 和 j 有相同的值,这便是个自我赋值。再看:
*px = *py; // 潜在自我赋值
如果 px 和 py 刚好指向同一个东西,这也是自我赋值,这些都是并不明显的自我赋值。
考虑到我们的类内含指针成员变量:
class B { ... };
class A
{
...
private:
B * pb; // 指针,指向一个从堆分配而得的对象
}
下面是operator = 实现代码,表面上看起来合理,但自我赋值出现时并不安全:
A& A::operator=(const A& rhs) // 一份不安全的operator = 实现版本
{
delete pb; // 释放旧的指针对象
pb = new B(*rhs.pb); // 生成新的地址
return *this;
}
这里的自我赋值的问题是, operator=
函数内的 *this(赋值的目的端)和 rhs 有可能是同一个对象。果真如此 delete 就不只是销毁当前对象的 pb,它也销毁 rhs 的 pb。
相当于发生了自我销毁(自爆/自灭)过程,那么此时 A 类对象持有了一个指向一个被销毁的 B 类对象。非常的危险,请勿模仿!
下面来说说如何规避这种问题的方式。
方式一:比较来源对象和目标对象的地址
要想阻止这种错误,传统的做法是在 operator=
函数最前面加一个 if
判断,判断是否是自己,不是才进行赋值操作:
A& A::operator=(const A& rhs)
{
if(this == &rhs)
return *this; // 如果是自我赋值,则不做任何事情。
delete pb; // 释放旧的指针对象
pb = new B(*rhs.pb); // 生成新的地址
return *this;
}
这样错虽然行得通,但是不具备自我赋值的安全性,也不具备异常安全性:
我旧文里《C++ 赋值运算符’='的重载(浅拷贝、深拷贝)》在规避这个问题试,就采用的是方式 一,这个方式是不合适的。
方式二:精心周到的语句顺序
把代码的顺序重新编排以下就可以避免此问题,例如一下代码,我们只需之一在赋值 pb 所指东西之前别删掉 pb :
A& A::operator=(const A& rhs)
{
A* pOrig = pb; // 记住原先的pb
pb = new B(*rhs.pb); // 令 pb 指向 *pb的一个副本
delete pOrig; // 删除原先的pb
return *this;
}
现在,如果「 new B 」这句发生了异常,pb 依然保持原状。即使没有加 if 自我判断,这段代码还是能够处理自我赋值,因为我们对原 B 做了一份副本、删除原 B 、然后返回引用指向新创造的那个副本。
它或许不是处理自我赋值的最高效的方法,但它行得通。
方式三:copy and swap
更高效的方式使用所谓的 copy and swap 技术,实现方法如下:
class A
{
...
void swap(A& rhs) // 交换*this 和 rhs 的数据
{
using std::swap;
swap(pb, rhs.pb);
}
...
private:
B * pb; // 指针,指向一个从堆分配而得的对象
}
};
A& A::operator=(const A& rhs)
{
A temp(rhs); // 为 rhs 制作一份复件(副本)
swap(tmp); // 将 *this 数据和上述复件的数据交换。
return *this;
}
当类里 operator=
函数被声明为「以 by value 方式接受实参」,那么由于 by value 方式传递东西会造成一份复件(副本),则直接 swap 交换即可,如下:
A& A::operator=(A rhs) // rhs是被传对象的一份复件
{
swap(rhs); // 将 *this 数据和复件的数据交换。
return *this;
}
细节 09 小结 - 请记住
在以下我把复制构造函数和赋值操作符函数,称为「copying 函数」。
如果你声明自己的 copying 函数,那么编译器就不会创建默认的 copying 函数。但是,当你在实现 copying 函数,遗漏了某个成分没被 copying,编译器却不会告诉你。
确保对象内的所有成员变量 copying
考虑用一个 class 用来表示学生,其中自实现 copying 函数,如下:
class Student
{
public:
...
Student(const Student& rhs);
Student& operator=(const Student& rhs);
...
private:
std:: string name;
}
Student::Student(const Student& rhs)
: name(rhs.name) // 复制 rhs 的数据
{ }
Student& Student::operator=(const Student& rhs)
{
name = rhs.name; // 复制 rhs 的数据
return *this;
}
这里的每一件事情看起来都很好,直到另一个成员变量加入战局:
class Student
{
public:
... // 同前
private:
std:: string name;
int score;
}
这时候遗漏对新成员变量的 copying。大多数编译器对此不做任何报错。
结论很明显:如果你为 class 添加一个成员变量,你必须同时修改 copying 函数。
确保所有 base class (基类) 成分 copying
一旦存在继承关系的类,可能会造成此一主题最黑暗肆意的一个潜在危机。试考虑:
class CollegeStudent : public Student // 继承 Student
{
public:
...
CollegeStudent(const CollegeStudent& rhs);
CollegeStudent& operator=(const CollegeStudent& rhs);
...
private:
std::string major;
};
CollegeStudent::CollegeStudent(const CollegeStudent& rhs)
: major(rhs.major)
{ }
CollegeStudent& CollegeStudent::operator=(const CollegeStudent& rhs)
{
major = rhs.major;
return *this;
}
CollegeStudent
的 copying 函数看起来好像复制了 CollegeStudent
内的每一样东西,但是请再看一眼。是的,它们复制了 CollegeStudent
声明的成员变量,但每个 CollegeStudent
还内含所继承的 Student
成员变量复件(副本),而哪些成员变量却未被复制。
所以任何时候只要我们承担起「为派生类撰写 copying 函数」的重则大任,必须很小心地也复制其 base class 成分:
CollegeStudent::CollegeStudent(const CollegeStudent& rhs)
: Student(rhs), // 调用 base class 的 copy构造函数
major(rhs.major)
{ }
CollegeStudent& CollegeStudent::operator=(const CollegeStudent& rhs)
{
Student::operator=(rhs); // 对 base class 成分进行赋值动作
major = rhs.major;
return *this;
}
所以我们不仅要确保复制所有类里的成员变量,还要调用所有 base classes 内的适当的 copying 函数。
消除 copying 函数之间的重复代码
还要一点需要注意的:不要令复制「构造函数」调用「赋值操作符函数」,来减少代码的重复。这么做也是存在危险的,假设调用赋值操作符函数不是你期望的。—— 错误行为。
同样也不要令「赋值操作符函数」调用「构造函数」。
如果你发现你的「复制构造函数和赋值操作符函数」有近似的代码,消除重复代码的做法是:建立一个新的成员函数给两者调用。
细节 10 小结 - 请记住
思维导图:
关注公众号,后台回复「我要学习」,即可免费获取精心整理「服务器 Linux C/C++ 」成长路程(书籍资料 + 思维导图)