安装说明
安装Scikit-plot非常简单,直接用命令:
pip install scikit-plot
即可完成安装。
仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例(py和ipynb格式)。
使用说明
简单举几个例子
比如画出分类评级指标的ROC曲线的完整代码:
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
nb = GaussianNB()
nb.fit(X_train, y_train)
predicted_probas = nb.predict_proba(X_test)
# The magic happens here
import matplotlib.pyplot as plt
import scikitplot as skplt
skplt.metrics.plot_roc(y_test, predicted_probas)
plt.show()
P-R曲线就是精确率precision vs 召回率recall 曲线,以recall作为横坐标轴,precision作为纵坐标轴。首先解释一下精确率和召回率。
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_digits as load_data
from sklearn.model_selection import cross_val_predict
import matplotlib.pyplot as plt
import scikitplot as skplt
X, y = load_data(return_X_y=True)
# Create an instance of the RandomForestClassifier
classifier = RandomForestClassifier()
# Perform predictions
predictions = cross_val_predict(classifier, X, y)
plot = skplt.metrics.plot_confusion_matrix(y, predictions, normalize=True)
plt.show()
本文对Scikit-plot做下简单介绍,这是一个机器学习的画图神器,几行代码就能画出高大上的机器学习图,作者当年的博士论文也是靠这个画图的。
仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例。
混淆矩阵是分类的重要评价标准,下面代码是用随机森林对鸢尾花数据集进行分类,分类结果画一个归一化的混淆矩阵。