机器学习(6)--朴素贝叶斯模型算法之鸢尾花数据实验

朴素贝叶斯模型是一种基于贝叶斯定理与特征条件独立假设的分类方法,
是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。

优点:算法逻辑简单,易于实现
缺点:朴素贝叶斯模型前提是假设属性之间相互独立,但这个在现实中往往是不存在的,当属性过多或属性之间相关性大时效果不太好


网上有非常多的关于朴素贝叶斯模型概率的数理方法,
我不打算在这写这些数理上的东西,仅通过python代码实现并讲解朴素贝叶斯模型实现过程
之所以说算法简单,在下面一大串的代码中真正和朴素贝叶斯模型有关的代码有关的就三句
1、以下两句这句的目的是计算训练集中的样本各属性的平均值与标准差
    mean=clfItems.mean(axis=0)#计算每个属性的平均值
    stdev= np.sqrt(np.sum((clfItems-mean)**2,axis=0)/float(len(clfItems)-1))#计算每个属性的标准差
2、以下这句就是测试集中每条记录在与训练集中进行比对所应用的朴素贝叶斯算法,
        #测试集中每条记录的每个属性在与训练集中进行比对应用的朴素贝叶斯算法,
        probabilities= np.exp(-1*(testItem[0:-1]-trainClfData[clfItem][:,0])**2/(trainClfData[clfItem][:,1]**2*2)) / (np.sqrt(2*np.pi)*trainClfData[clfItem][:,1])
这里应用的是Gaussian Naïve Bayes,高斯NB,
当然还有一些别的算法:如:Multinomial Naïve Bayes,多项式NB、Bernoulli Naïve Bayes,多元贝努利NB等

本例使用数据集简介:以鸢尾花的特征作为数据,共有数据集包含150个数据集,
分为3类setosa(山鸢尾), versicolor(变色鸢尾), virginica(维吉尼亚鸢尾)
每类50个数据,每条数据包含4个属性数据 和 一个类别数据.

通过这150个数据来演示朴素贝叶斯模型实现
这还有两篇文章也是关于鸢尾花的机器学习实验,有兴趣也可以了解一下
机器学习(2)--邻近算法(KNN)
机器学习(3.2)--PCA降维鸢尾花数据降维演示

废话不说,附上全部代码

# -*- coding:utf-8 -*-
#鸢尾花的特征作为数据
data='''5.1,3.5,1.4,0.2,Iris-setosa
        4.9,3.0,1.4,0.2,Iris-setosa
        4.7,3.2,1.3,0.2,Iris-setosa
        4.6,3.1,1.5,0.2,Iris-setosa
        5.0,3.6,1.4,0.2,Iris-setosa
        5.4,3.9,1.7,0.4,Iris-setosa
        4.6,3.4,1.4,0.3,Iris-setosa
        5.0,3.4,1.5,0.2,Iris-setosa
        4.4,2.9,1.4,0.2,Iris-setosa
        4.9,3.1,1.5,0.1,Iris-setosa
        5.4,3.7,1.5,0.2,Iris-setosa
        4.8,3.4,1.6,0.2,Iris-setosa
        4.8,3.0,1.4,0.1,Iris-setosa
        4.3,3.0,1.1,0.1,Iris-setosa
        5.8,4.0,1.2,0.2,Iris-setosa
        5.7,4.4,1.5,0.4,Iris-setosa
        5.4,3.9,1.3,0.4,Iris-setosa
        5.1,3.5,1.4,0.3,Iris-setosa
        5.7,3.8,1.7,0.3,Iris-setosa
        5.1,3.8,1.5,0.3,Iris-setosa
        5.4,3.4,1.7,0.2,Iris-setosa
        5.1,3.7,1.5,0.4,Iris-setosa
        4.6,3.6,1.0,0.2,Iris-setosa
        5.1,3.3,1.7,0.5,Iris-setosa
        4.8,3.4,1.9,0.2,Iris-setosa
        5.0,3.0,1.6,0.2,Iris-setosa
        5.0,3.4,1.6,0.4,Iris-setosa
        5.2,3.5,1.5,0.2,Iris-setosa
        5.2,3.4,1.4,0.2,Iris-setosa
        4.7,3.2,1.6,0.2,Iris-setosa
        4.8,3.1,1.6,0.2,Iris-setosa
        5.4,3.4,1.5,0.4,Iris-setosa
        5.2,4.1,1.5,0.1,Iris-setosa
        5.5,4.2,1.4,0.2,Iris-setosa
        4.9,3.1,1.5,0.1,Iris-setosa
        5.0,3.2,1.2,0.2,Iris-setosa
        5.5,3.5,1.3,0.2,Iris-setosa
        4.9,3.1,1.5,0.1,Iris-setosa
        4.4,3.0,1.3,0.2,Iris-setosa
        5.1,3.4,1.5,0.2,Iris-setosa
        5.0,3.5,1.3,0.3,Iris-setosa
        4.5,2.3,1.3,0.3,Iris-setosa
        4.4,3.2,1.3,0.2,Iris-setosa
        5.0,3.5,1.6,0.6,Iris-setosa
        5.1,3.8,1.9,0.4,Iris-setosa
        4.8,3.0,1.4,0.3,Iris-setosa
        5.1,3.8,1.6,0.2,Iris-setosa
        4.6,3.2,1.4,0.2,Iris-setosa
        5.3,3.7,1.5,0.2,Iris-setosa
        5.0,3.3,1.4,0.2,Iris-setosa
        7.0,3.2,4.7,1.4,Iris-versicolor
        6.4,3.2,4.5,1.5,Iris-versicolor
        6.9,3.1,4.9,1.5,Iris-versicolor
        5.5,2.3,4.0,1.3,Iris-versicolor
        6.5,2.8,4.6,1.5,Iris-versicolor
        5.7,2.8,4.5,1.3,Iris-versicolor
        6.3,3.3,4.7,1.6,Iris-versicolor
        4.9,2.4,3.3,1.0,Iris-versicolor
        6.6,2.9,4.6,1.3,Iris-versicolor
        5.2,2.7,3.9,1.4,Iris-versicolor
        5.0,2.0,3.5,1.0,Iris-versicolor
        5.9,3.0,4.2,1.5,Iris-versicolor
        6.0,2.2,4.0,1.0,Iris-versicolor
        6.1,2.9,4.7,1.4,Iris-versicolor
        5.6,2.9,3.6,1.3,Iris-versicolor
        6.7,3.1,4.4,1.4,Iris-versicolor
        5.6,3.0,4.5,1.5,Iris-versicolor
        5.8,2.7,4.1,1.0,Iris-versicolor
        6.2,2.2,4.5,1.5,Iris-versicolor
        5.6,2.5,3.9,1.1,Iris-versicolor
        5.9,3.2,4.8,1.8,Iris-versicolor
        6.1,2.8,4.0,1.3,Iris-versicolor
        6.3,2.5,4.9,1.5,Iris-versicolor
        6.1,2.8,4.7,1.2,Iris-versicolor
        6.4,2.9,4.3,1.3,Iris-versicolor
        6.6,3.0,4.4,1.4,Iris-versicolor
        6.8,2.8,4.8,1.4,Iris-versicolor
        6.7,3.0,5.0,1.7,Iris-versicolor
        6.0,2.9,4.5,1.5,Iris-versicolor
        5.7,2.6,3.5,1.0,Iris-versicolor
        5.5,2.4,3.8,1.1,Iris-versicolor
        5.5,2.4,3.7,1.0,Iris-versicolor
        5.8,2.7,3.9,1.2,Iris-versicolor
        6.0,2.7,5.1,1.6,Iris-versicolor
        5.4,3.0,4.5,1.5,Iris-versicolor
        6.0,3.4,4.5,1.6,Iris-versicolor
        6.7,3.1,4.7,1.5,Iris-versicolor
        6.3,2.3,4.4,1.3,Iris-versicolor
        5.6,3.0,4.1,1.3,Iris-versicolor
        5.5,2.5,4.0,1.3,Iris-versicolor
        5.5,2.6,4.4,1.2,Iris-versicolor
        6.1,3.0,4.6,1.4,Iris-versicolor
        5.8,2.6,4.0,1.2,Iris-versicolor
        5.0,2.3,3.3,1.0,Iris-versicolor
        5.6,2.7,4.2,1.3,Iris-versicolor
        5.7,3.0,4.2,1.2,Iris-versicolor
        5.7,2.9,4.2,1.3,Iris-versicolor
        6.2,2.9,4.3,1.3,Iris-versicolor
        5.1,2.5,3.0,1.1,Iris-versicolor
        5.7,2.8,4.1,1.3,Iris-versicolor
        6.3,3.3,6.0,2.5,Iris-virginica
        5.8,2.7,5.1,1.9,Iris-virginica
        7.1,3.0,5.9,2.1,Iris-virginica
        6.3,2.9,5.6,1.8,Iris-virginica
        6.5,3.0,5.8,2.2,Iris-virginica
        7.6,3.0,6.6,2.1,Iris-virginica
        4.9,2.5,4.5,1.7,Iris-virginica
        7.3,2.9,6.3,1.8,Iris-virginica
        6.7,2.5,5.8,1.8,Iris-virginica
        7.2,3.6,6.1,2.5,Iris-virginica
        6.5,3.2,5.1,2.0,Iris-virginica
        6.4,2.7,5.3,1.9,Iris-virginica
        6.8,3.0,5.5,2.1,Iris-virginica
        5.7,2.5,5.0,2.0,Iris-virginica
        5.8,2.8,5.1,2.4,Iris-virginica
        6.4,3.2,5.3,2.3,Iris-virginica
        6.5,3.0,5.5,1.8,Iris-virginica
        7.7,3.8,6.7,2.2,Iris-virginica
        7.7,2.6,6.9,2.3,Iris-virginica
        6.0,2.2,5.0,1.5,Iris-virginica
        6.9,3.2,5.7,2.3,Iris-virginica
        5.6,2.8,4.9,2.0,Iris-virginica
        7.7,2.8,6.7,2.0,Iris-virginica
        6.3,2.7,4.9,1.8,Iris-virginica
        6.7,3.3,5.7,2.1,Iris-virginica
        7.2,3.2,6.0,1.8,Iris-virginica
        6.2,2.8,4.8,1.8,Iris-virginica
        6.1,3.0,4.9,1.8,Iris-virginica
        6.4,2.8,5.6,2.1,Iris-virginica
        7.2,3.0,5.8,1.6,Iris-virginica
        7.4,2.8,6.1,1.9,Iris-virginica
        7.9,3.8,6.4,2.0,Iris-virginica
        6.4,2.8,5.6,2.2,Iris-virginica
        6.3,2.8,5.1,1.5,Iris-virginica
        6.1,2.6,5.6,1.4,Iris-virginica
        7.7,3.0,6.1,2.3,Iris-virginica
        6.3,3.4,5.6,2.4,Iris-virginica
        6.4,3.1,5.5,1.8,Iris-virginica
        6.0,3.0,4.8,1.8,Iris-virginica
        6.9,3.1,5.4,2.1,Iris-virginica
        6.7,3.1,5.6,2.4,Iris-virginica
        6.9,3.1,5.1,2.3,Iris-virginica
        5.8,2.7,5.1,1.9,Iris-virginica
        6.8,3.2,5.9,2.3,Iris-virginica
        6.7,3.3,5.7,2.5,Iris-virginica
        6.7,3.0,5.2,2.3,Iris-virginica
        6.3,2.5,5.0,1.9,Iris-virginica
        6.5,3.0,5.2,2.0,Iris-virginica
        6.2,3.4,5.4,2.3,Iris-virginica
        5.9,3.0,5.1,1.8,Iris-virginica'''

import numpy as np
#数据处理,取得150条的数据,将类别转化为1.0,2.0,3.0数字,因为后面使用NUMPY计算比较快,在类别的类型上和属性一样使用浮点型
data = data.replace(' ','').replace("Iris-setosa","1.0").replace("Iris-versicolor","2.0").replace("Iris-virginica","3.0").split('\n')
data = list(filter(lambda x: len(x) > 0,data))
data = [x.split(',') for x in data]
data = np.array(data).astype(np.float16)

#将数据随机分成训练集与测试集
def splitData(trainPrecent=0.7):
    train = []
    test = []
    for i in data:
        (train if np.random.random() < trainPrecent else test).append(i)
    return np.array(train),np.array(test)
trainData,testData = splitData()
print("共有%d条数据,分解为%d条训练集与%d条测试集"%(len(data),len(trainData),len(testData)))

clf=set(trainData[:,-1]) #读取每行最后一个数据,用set得出共有几种分类,本例为1.0,2.0,3.0
trainClfData={} #有于存储每个类别的均值与标准差
for x in clf:
    clfItems=np.array(list(filter(lambda i:i[-1]==x ,trainData)))[:,:-1]#从训练集中按类别过滤出记录
    mean=clfItems.mean(axis=0)#计算每个属性的平均值
    stdev= np.sqrt(np.sum((clfItems-mean)**2,axis=0)/float(len(clfItems)-1))#计算每个属性的标准差
    trainClfData[x]=np.array([mean,stdev]).T  #对每个类形成固定的数据格式[[属性1均值,属性1标准差],[属性2均值,属性2标准差]]
#print(trainClfData)

result=[]
for testItem in testData:
    itemData=testItem[0:-1] #得到训练的属性数据
    itemClf=testItem[-1]#得到训练的分类数据
        
    prediction={} #用于存储单条记录集对应的每个类别的概率
    for clfItem in trainClfData:
        #测试集中单条记录的每个属性在与训练集中进行比对应用的朴素贝叶斯算法,
        probabilities= np.exp(-1*(testItem[0:-1]-trainClfData[clfItem][:,0])**2/(trainClfData[clfItem][:,1]**2*2)) / (np.sqrt(2*np.pi)*trainClfData[clfItem][:,1])
        #将每个属性的概率相乘,等到最终该类别的概率
        clfPrediction=1
        for proItem in probabilities:
            clfPrediction*=proItem
        prediction[clfItem]=clfPrediction

    #取得最大概率的那个类别
    maxProbablity=None
    for x in prediction:
        if maxProbablity==None or prediction[x]>prediction[maxProbablity]:
            maxProbablity=x
    
    #将计算的数据返回,后面有一句print我关闭了,打开就可以看到这些结果
    result.append({'数据':itemData.tolist()
                    ,'实际分类':itemClf
                    ,'各类别概率':prediction
                    ,'测试分类(最大概率类别)':maxProbablity
                    ,'是否正确': 1 if itemClf==maxProbablity else 0})
rightCount=0;
for x  in result:
    rightCount+=x['是否正确']
    #print(x) #打印出每条测试集计算的数据
print('共%d条测试数据,测试正确%d条,正确率%2f:'%(len(result),rightCount,rightCount/len(result)))


你可能感兴趣的:(python,机器学习)