笔者介绍:姜雪伟,IT公司技术合伙人,IT高级讲师,CSDN社区专家,特邀编辑,畅销书作者,已出版书籍:《手把手教你架构3D游戏引擎》电子工业出版社和《Unity3D实战核心技术详解》电子工业出版社等。
CSDN视频网址:http://edu.csdn.net/lecturer/144
再给读者介绍一种算法插值算法,给定n个均匀分布值arr []的排序数组,写一个函数来搜索数组中的特定元素x。我们先比较一下各种搜索算法实现该算法的复杂度,线性搜索在O(n)时间内找到元素,跳跃搜索采用O(√n)时间,二进制搜索取O(Log n)时间。
插值搜索是对实例的二分查找搜索的改进,其中排序数组中的值是均匀分布。 二分查找搜索总是转到中间元素来检查。 另一方面,根据正在搜索的键的值,插值搜索可以去不同的位置,例如,如果键的值更接近最后一个元素,则插值搜索可能会朝向端部开始搜索。
要找到要搜索的位置,它使用以下公式。
// The idea of formula is to return higher value of pos // when element to be searched is closer to arr[hi]. And // smaller value when closer to arr[lo] pos = lo + [ (x-arr[lo])*(hi-lo) / (arr[hi]-arr[Lo]) ] arr[] ==> Array where elements need to be searched x ==> Element to be searched lo ==> Starting index in arr[] hi ==> Ending index in arr[]
插值算法与上述分区逻辑相同。
步骤1:在循环中,使用探针位置公式计算“pos”的值。
步骤2:如果是匹配项,返回项的索引,然后退出。
步骤3:如果项小于arr [pos],计算左子阵列的探针位置, 否则在右侧子阵列中计算是否相同。
步骤4:重复,直到发现匹配或子数组减少为零。
先给读者介绍一下使用C语言实现算法代码:
#include
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
int interpolationSearch(int arr[], int n, int x)
{
// Find indexes of two corners
int lo = 0, hi = (n - 1);
// Since array is sorted, an element present
// in array must be in range defined by corner
while (lo <= hi && x >= arr[lo] && x <= arr[hi])
{
// Probing the position with keeping
// uniform distribution in mind.
int pos = lo + (((double)(hi-lo) /
(arr[hi]-arr[lo]))*(x - arr[lo]));
// Condition of target found
if (arr[pos] == x)
return pos;
// If x is larger, x is in upper part
if (arr[pos] < x)
lo = pos + 1;
// If x is smaller, x is in lower part
else
hi = pos - 1;
}
return -1;
}
// Driver Code
int main()
{
// Array of items on which search will
// be conducted.
int arr[] = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23,
24, 33, 35, 42, 47};
int n = sizeof(arr)/sizeof(arr[0]);
int x = 18; // Element to be searched
int index = interpolationSearch(arr, n, x);
// If element was found
if (index != -1)
printf("Element found at index %d", index);
else
printf("Element not found.");
return 0;
}
另外给读者展示一下java实现的代码:
class Test
{
// Array of items on which search will
// be conducted.
static int arr[] = new int[]{10, 12, 13, 16, 18, 19, 20, 21, 22, 23,
24, 33, 35, 42, 47};
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
static int interpolationSearch(int x)
{
// Find indexes of two corners
int lo = 0, hi = (arr.length - 1);
// Since array is sorted, an element present
// in array must be in range defined by corner
while (lo <= hi && x >= arr[lo] && x <= arr[hi])
{
// Probing the position with keeping
// uniform distribution in mind.
int pos = lo + (((hi-lo) /
(arr[hi]-arr[lo]))*(x - arr[lo]));
// Condition of target found
if (arr[pos] == x)
return pos;
// If x is larger, x is in upper part
if (arr[pos] < x)
lo = pos + 1;
// If x is smaller, x is in lower part
else
hi = pos - 1;
}
return -1;
}
// Driver method
public static void main(String[] args)
{
int x = 18; // Element to be searched
int index = interpolationSearch(x);
// If element was found
if (index != -1)
System.out.println("Element found at index " + index);
else
System.out.println("Element not found.");
}
}
运行输出结果:
Element found at index 4时间复杂性:如果元素均匀分布,则O(log log n)),在最坏的情况下可能需要O(n)。