/*
* [题意]
* 有n个格子需要填色,有6种颜色(设为123456),要求:
* 1、填完后要对称
* 2、相邻不能同色
* 3、不可出现123456的情况
* [解题方法]
* 由于是对称所以只要处理前(n+1)/2个,翻过去即可(注意此时不可出现654321,因为要翻过去)
* 即令n=(n+1)/2求解即可
*!设f(n,x):长度为n的以x结尾的合法颜色串个数
* 所以由题意得:
* 1、f(n,1) = f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,5)+f(n-1,6) - f(n-1,65432)
* 2、f(n,2) = f(n-1,1)+f(n-1,3)+f(n-1,4)+f(n-1,5)+f(n-1,6)
* 3、f(n,3) = f(n-1,1)+f(n-1,2)+f(n-1,4)+f(n-1,5)+f(n-1,6)
* 4、f(n,4) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,5)+f(n-1,6)
* 5、f(n,5) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,6)
* 6、f(n,6) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,5) - f(n-1,12345)
*
* 7、f(n,12) = f(n-1,1)
* 8、f(n,123) = f(n-1,12)
* 9、f(n,1234) = f(n-1,123)
* 10、f(n,12345) = f(n-1,1234)
*
* 11、f(n,65) = f(n-1,6)
* 12、f(n,654) = f(n-1,65)
* 13、f(n,6543) = f(n-1,654)
* 14、f(n,65432) = f(n-1,6543)
*
* 所以有矩阵:
* |0 1 1 1 1 1 0 0 0 0 0 0 0 -1| |f(n-1,1) | |f(n,1) |
* |1 0 1 1 1 1 0 0 0 0 0 0 0 0 | |f(n-1,2) | |f(n,2) |
* |1 1 0 1 1 1 0 0 0 0 0 0 0 0 | |f(n-1,3) | |f(n,3) |
* |1 1 1 0 1 1 0 0 0 0 0 0 0 0 | |f(n-1,4) | |f(n,4) |
* |1 1 1 1 0 1 0 0 0 0 0 0 0 0 | |f(n-1,5) | |f(n,5) |
* |1 1 1 1 1 0 0 0 0 -1 0 0 0 0 | |f(n-1,6) | |f(n,6) |
* |1 0 0 0 0 0 0 0 0 0 0 0 0 0 | * |f(n-1,12) | = |f(n,12) |
* |0 0 0 0 0 0 1 0 0 0 0 0 0 0 | |f(n-1,123) | |f(n,123) |
* |0 0 0 0 0 0 0 1 0 0 0 0 0 0 | |f(n-1,1234) | |f(n,1234) |
* |0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |f(n-1,12345) | |f(n,12345) |
* |0 0 0 0 0 1 0 0 0 0 0 0 0 0 | |f(n-1,65) | |f(n,65) |
* |0 0 0 0 0 0 0 0 0 0 1 0 0 0 | |f(n-1,654) | |f(n,654) |
* |0 0 0 0 0 0 0 0 0 0 0 1 0 0 | |f(n-1,6543) | |f(n,6543) |
* |0 0 0 0 0 0 0 0 0 0 0 0 1 0 | |f(n-1,65432) | |f(n,65432) |
* 答案 = f(n,1) + f(n,2) + f(n,3) + f(n,4) + f(n,5) + f(n,6)
*/
#include
#include
#include
using namespace std;
#define M 15
#define LL long long
#define FF(i, n) for(int i = 0; i < n; i++)
int ans[M], mod = 112233;
int ret[M][M], C[M][M];
int init[M][M];
void ini()
{
memset(ans, 0, sizeof(ans));
memset(init, 0, sizeof(init));
FF(i, 6) {
ans[i] = 1;
FF(j, 6) if (i != j) init[i][j] = 1;
}
init[5][9] = -1;
init[6][0] = init[7][6] = init[8][7] = init[9][8] = 1;
init[0][13] = -1;
init[10][5] = init[11][10] = init[12][11] = init[13][12] = 1;
}
void matmul(int a[][M], int b[][M], int n)
{
int tp[M][M] = {0};
FF(i, n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j])
tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod;
FF(i, n) FF(j, n) a[i][j] = tp[i][j];
}
void matmul(int a[], int b[][M], int n)
{
int tp[M] = {0};
FF(j, n) if(a[j]) FF(i, n) if(b[i][j])
tp[i] = (tp[i] + (LL)b[i][j]*a[j]) % mod;
FF(i, n) a[i] = tp[i];
}
void qmod(int n, int b)
{
FF(i, n) FF(j, n) ret[i][j] = (i==j);
for ( ; b; b >>= 1)
{
if (b & 1) matmul(ret, init, n);
matmul(init, init, n);
}
}
int main()
{
int n;
while (cin >> n)
{
if (n % 2 == 0) {
puts("0");
continue;
}
n /= 2;
++n;
ini();
qmod(14, n-1);
matmul(ans, ret, 14);
int sum = 0;
FF(i, 6) sum = (sum + ans[i]) % mod;
cout << (sum+mod)%mod << endl;
}
return 0;
}