- OpenAI Chatgpt发展历史和Chatgpt-3的研发过程工作原理
roxxo
gpt-3深度学习人工智能chatgpt
ChatGPT是由OpenAI的研究团队基于GPT技术(GenerativePre-trainedTransformer)开发的AI对话引擎。ChatGPT发展历史如下:2015年,GPT技术由OpenAI的研究团队首次提出。该技术使用了一种无需人类标注的方式,使神经网络学习到了大量自然语言处理任务的知识。2018年,OpenAI团队开发了第一个GPT模型,并在自然语言处理领域取得了显著的成果。该
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- ReLU和ReLU6
chen_znn
激活函数pytorch深度学习人工智能计算机视觉
ReLU和ReLU6都是深度学习中常用的激活函数,它们各自有不同的优缺点。ReLU(RectifiedLinearUnit)优点非线性:ReLU是一个非线性函数,能够帮助神经网络学习复杂的模式和特征计算简单:ReLU函数的计算速度快,只需要判断输入是否大于零,因此在实践中被广泛采用解决梯度消失问题:相比于一些传统的激活函数,ReLU对梯度消失问题有一定的缓解作用缺点神经元死亡问题:当输入值为负时,
- 神经网络和深度学习
灰斗儿
原著作者:michael_nielsen前往神经网络和深度学习神经网络和深度学习是一本免费的在线图书,这本书将教给你:神经网络,是一个由于生物启发的编程规范,使计算机通过观察数据进行学习深度学习,一种强大的神经网络学习技术神经网络和深度学习目前为图像识别、语音识别和自然语言处理中的许多问题提供了最好的解决方案。这本书将教你许多神经网络和深度学习背后的核心概念。有关这本书所采取的方法的更多的细节,看
- 神经网络简述
城市中迷途小书童
一、什么是神经网络机器学习中谈论的神经网络是指“神经网络学习”,或者说,是机器学习和神经网络这两个学科领域的交叉部分[1]。在这里,神经网络更多的是指计算机科学家模拟人类大脑结构和智能行为,发明的一类算法的统称。神经网络是众多优秀仿生算法中的一种,读书时曾接触过蚁群优化算法,曾惊讶于其强大之处,但神经网络的强大,显然蚁群优化还不能望其项背。二、简要历史A、起源与第一次高潮。有人认为,神经网络的最早
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 神经网络学习小记录36——Keras实现LSTM与LSTM参数量详解
Bubbliiiing
神经网络学习小记录KerasLSTM神经网络深度学习
神经网络学习小记录36——Keras实现LSTM学习前言什么是LSTM1、LSTM的结构2、LSTM独特的门结构3、LSTM参数量计算a、遗忘门b、输入门c、输出门d、全部参数量在Keras中实现LSTM实现代码学习前言我死了我死了我死了!什么是LSTM1、LSTM的结构我们可以看出,在n时刻,LSTM的输入有三个:当前时刻网络的输入值Xt;上一时刻LSTM的输出值ht-1;上一时刻的单元状态Ct
- python 神经网络学习
追寻内心的梦想
最新在朋友的推荐下看了《python神经网络编程》,深有启发,本文以深入浅出的道理,简单明了的介绍了一种神经网络的原理及python实现过程及全部代码,通过学习,至少基本掌握了相关知识,为后面学习打下基础,有几点心得分享如下:1、大学阶段学好数学很重要在《python神经网络编程》一书中,里面核心的算法思维方式就是线性代数和微积分,尤其是线性代数矩阵的乘法,是神经网络计算的核心内容,幸好大学时这块
- 人工智能福利站,初识人工智能,图神经网络学习,第三课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏人工智能专业知识学习三图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(3)21.请解释图神经网络中的前向传播过程。22.请解释
- 人工智能福利站,初识人工智能,图神经网络学习,第二课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(2)11.请介绍常见的图神经网络模型,如GraphConvolutionalNetworks
- 人工智能福利站,初识人工智能,图神经网络学习,第一课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(1)01.什么是图神经网络(GNN)?02.图神经网络与传统神经网络的区别是什么?03.图神经网络有哪些主要的应用领域?04.请
- Python GCN、GAT、MP等图神经网络学习,从入门全面概述和讲解GNN,入门到精通图神经网络
医学小达人
推荐算法人工智能图神经网络图神经网络人工智能推荐系统
1.图的分类:1.1根据边的方向性:有向图(DirectedGraph):图中的边具有方向性,表示节点之间的单向关系。例如,A指向B的边表示节点A指向节点B。无向图(UndirectedGraph):图中的边没有方向性,表示节点之间的双向关系。例如,A和B之间的边表示节点A和节点B之间存在连接关系。1.2根据边的是否具有权重:加权图(WeightedGraph):图中的边具有权重,表示节点之间的强
- 吴恩达coursera机器学习个人向笔记——9章神经网络学习
选西瓜专业户
吴恩达机器学习吴恩达机器学习
文章目录课时62非线性假设09:36课时63神经元与大脑07:47课时64模型展示Ⅰ12:01课时65模型展示Ⅱ11:46课时68例子与直觉理解Ⅰ07:15课时70例子与直觉理解Ⅱ10:20课时71多元分类03:51课时62非线性假设09:36对图1那样的作分类,逻辑斯蒂回归中,只要g(θ转X)中的(高次)项足够多,就一定能找出边界但这是2个特征的情况如果有100个特征,二次交叉项会将近5000个
- 【深度学习】基于PyTorch架构神经网络学习总结(基础概念&基本网络搭建)
hi_ly_51
深度学习pytorch神经网络
nn.Module的使用利用PyTorch架构使用神经网络模型时,一般是利用torch.nn函数自定义神经网络框架|官方示例:importtorch.nnasnnimporttorch.nn.functionalasFclassModel(nn.Module):def__init__(self):super().__init__()self.conv1=nn.Conv2d(1,20,5)self.
- 使用colab、featurize进行深度学习
TowerCrane2C
深度学习人工智能
神经网络学习小记录69——Pytorch使用GoogleColab进行深度学习_googlecolabpytorch_Bubbliiiing的博客-CSDN博客PyTorch快速查看pth文件保存的参数_pytorch怎么看pth参数类型_Kkkkaii的博客-CSDN博客(新手向)从零开始使用Colab进行机器/深度学习详细教程_liyihao76的博客-CSDN博客zz使用colab的一个步骤
- 【深度学习】神经网络可视化工具,超全汇总!
风度78
深度学习神经网络人工智能机器学习
神经网络可视化是指通过图形化的方式展示神经网络的结构、参数、输入、输出、中间结果等信息,可以帮助用户更好地神经网络的内部工作原理和特征提取过程,以优化神经网络模型。扩展阅读:神经网络学习到的是什么?机器学习可视化技术概览(Python)本文汇总了全网最为全面的26款神经网络可视化工具,可以帮助大家了解神经网络的结构组成、工作原理和性能表现,从而更好地进行模型调整和优化。也可以画出酷炫的模型图方便模
- [笔记]深度学习入门 基于Python的理论与实现(六)
飞鸟malred
ai笔记深度学习python
6.与学习相关的技巧6.1参数的更新神经网络学习的目的是找到使损失函数尽可能小的参数,这个过程叫最优化_(optimization_),但是由于神经网络的参数空间复杂,所以很难求最优解.前几章,我们使用参数的梯度,沿梯度的反向更新参数,重复多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降_(stochasticgradientdescent_),简称SGD6.1.1探险家的故事6.1.2SGD
- 神经网络学习
积雨辋川
机器学习神经网络机器学习
神经网络一、神经网络概述人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:(1)生物原型研究从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结
- 吴恩达卷积神经网络学习笔记(六)|CSDN创作打卡
墨倾许
深度学习神经网络计算机视觉
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
- 吴恩达卷积神经网络学习笔记(二)
墨倾许
cnn深度学习机器学习
一.卷积神经网络(一)1.6三维卷积3指的是颜色通道(RGB)6*6*3分别对应宽*高*通道的数目滤波器也有相对应的3*3*3,由此得到一个4*4的输出。对三维图像进行卷积时,卷积核的通道数要与三维图像的通道数相等。当我们想对图像的多个边缘特征进行检测时,我们可以使用多个卷积核,这样卷积后生成图像的通道数为使用的卷积核的个数。对于三维卷积具体运算的实例如下:如果使用的是下图3*3*3的卷积核,则一
- 【深度学习】初识深度学习
wmh1024
深度学习人工智能
初识深度学习什么是深度学习关系:人工智能机器学习深度学习卷积神经网络深度学习和机器学习的关系:机器学习:随着数据量增加会改进性能的算法深度学习:使用多层神经网络学习。深度学习是机器学习的子集。传统系统和深度学习的区别:传统编程系统:定义规则,输入数据获取输出(定义f(x)、x求得y)深度学习系统:输入答案和数据,输出规则(定义x、y求得f(x),且f(x)具有泛化性)规则f(x)规则f(x)数据x
- CNN神经网络学习
闻林禹
神经网络cnn学习
作为一名算力芯片工程师,平时跟芯片设计打交道比较多。同时希望能对软件/神经网络应用层面有更多的了解,以加强对芯片内部设计需求的理解。此贴记录了自己对神经网络的学习过程。1.前期准备参考:MacM1安装Miniconda+支持GPU的TensorFlow和PyTorch_minicondamac-CSDN博客神经网络的搭建可以用pytorch,TensorFlow等,推荐在miniconda安装神经
- 【神经网络算子】
dataloading
神经网络人工智能深度学习
神经网络算子(1)——DeepONet介绍AI与PDE(三):大概是最好懂的DeepONet模型解析算子把函数映射为函数。输入函数u,在固定的sensors上:x_1,x_2,…,x_m。即u(x_i)和y。输出函数G(u),在随机的y上。即G(u)(y)。目的是,让神经网络学习算子G,从u(y)可以得到G(u)(y)。
- AAAI 2023 | 图神经网络学习同构计数
PaperWeekly
神经网络学习深度学习机器学习人工智能
©PaperWeekly原创·作者|于星橦单位|中国科学技术大学博士生研究方向|图神经网络论文题目:LearningtoCountIsomorphismswithGraphNeuralNetworks论文链接:https://arxiv.org/pdf/2302.03266.pdf代码链接:https://github.com/Starlien95/Count-GNN论文录用:AAAI2023Ma
- 08-20201012 感知机2 感知机的权重调整过程叫不叫反向传播?
野山羊骑士
神经网络的学习主要蕴含在权重和阈值中,多层网络使用上面简单感知机的权重调整规则显然不够用了,BP神经网络算法即误差逆传播算法(errorBackPropagation)正是为学习多层前馈神经网络而设计,BP神经网络算法是迄今为止最成功的的神经网络学习算法。上图的网络中有(d+l+1)*q+l个参数需要确定:输入层到隐层的d×q个权重,隐层到输出层q×l个权重、q个隐层神经元的阈值、l个输出神经元的
- 模型预测控制MPC
oceancoco
pythonpytorch人工智能
第16章模型预测控制16.1简介之前几章介绍了基于值函数的方法DQN、基于策略的方法REINFORCE以及两者结合的方法Actor-Critic。他们都是无模型的方法,即没有建立一个环境模型来帮助智能体决策。而在深度强化学习领域,基于模型的方法通常用神经网络学习一个环境模型,然后利用该环境模型来帮助智能体训练和决策。利用环境模型帮助智能体训练和决策的方法有很多种,例如可以利用与之前的Dyna类似的
- C2-3.3.2 机器学习/深度学习——数据增强
帅翰GG
机器学习机器学习深度学习人工智能
C2-3.3.2数据增强参考链接1、为什么要使用数据增强?※总结最经典的一句话:希望模型学习的更稳健当数据量不足时候:人工智能三要素之一为数据,但获取大量数据成本高,但数据又是提高模型精度和泛化效果的重要因素。当数据量不足时,模型很容易过拟合,精度也无法继续提升,因此数据增强技术应运而生通过执行数据增强,你可以阻止神经网络学习不相关的特征,从根本上提升整体性能。——见后面4、应用场景举例2、什么是
- [2014]Intriguing properties of neural networks
蹦卡拉卡yiyo
人工智能深度学习
仅用作笔记学习使用,侵权联系立删!两种特性:1、个别高层次单元和高层次单元的随机线性组合没有太大的差异【这表明,在神经网络的高层中包含语义信息的是空间,而不是个体单元。】2、深度神经网络学习的输入-输出映射在很大程度上不连续的【稍微添加一点扰动,模型就会得到图像的错误分类,特别注意的是,这种扰动跟数据集无关,对不同是数据集添加同样的扰动,不同的模型都会得到错误的分类,也就是说这种扰动是针对神经网络
- 如何选择神经网络的超参数?
Imagination官方博客
网络神经网络大数据python机器学习
1.神经网络的超参数分类神经网路中的超参数主要包括:学习率η,正则化参数λ,神经网络的层数L,每一个隐层中神经元的个数j,学习的回合数Epoch,小批量数据minibatch的大小,输出神经元的编码方式,代价函数的选择,权重初始化的方法,神经元激活函数的种类,参加训练模型数据的规模这些都是可以影响神经网络学习速度和最后分类结果,其中神经网络的学习速度主要根据训练集上代价函数下降的快慢有关,而最后的
- 梯度消失与梯度爆炸的问题小结
笔写落去
深度学习深度学习机器学习笔记
本文参考李沐老师动手深度学习,上篇激活函数有遇到这个问题我们来深入探讨一下文章目录前言一、梯度爆炸二、梯度爆炸的问题三、梯度消失四.梯度消失的问题总结前言到目前为止,我们实现的每个模型都是根据某个预先指定的分布来初始化模型的参数。有人会认为初始化方案是理所当然的,忽略了如何做出这些选择的细节。甚至有人可能会觉得,初始化方案的选择并不是特别重要。相反,初始化方案的选择在神经网络学习中起着举足轻重的作
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam