**
**
Discrete Distribution(离散型分布):
Continuous Distribution (连续型分布):
K-MeansK-Mediods
二分K-Means
FK-Means
Canopy
Spectral-KMeans(谱聚类)
GMM-EM(混合高斯模型-期望最大化算法解决)
K-Pototypes
CLARANS(基于划分)
BIRCH(基于层次)
CURE(基于层次)
STING(基于网格)
CLIQUE(基于密度和基于网格)
2014年Science上的密度聚类算法等
Purity(纯度)
RI(Rand Index, 芮氏指标)
ARI(Adjusted Rand Index, 调整的芮氏指标)
NMI(Normalized Mutual Information, 规范化互信息)
F-meaure(F测量)
LR(Linear Regression, 线性回归)
LR(Logistic Regression, 逻辑回归)
SR(Softmax Regression, 多分类逻辑回归)
GLM(Generalized Linear Model, 广义线性模型)
RR(Ridge Regression, 岭回归/L2正则最小二乘回归),LASSO(Least Absolute Shrinkage and Selectionator Operator , L1正则最小二乘回归)
DT(Decision Tree决策树)
RF(Random Forest, 随机森林)
GBDT(Gradient Boosting Decision Tree, 梯度下降决策树)
CART(Classification And Regression Tree 分类回归树)
KNN(K-Nearest Neighbor, K近邻)
SVM(Support Vector Machine, 支持向量机, 包括SVC(分类)&SVR(回归))
CBA(Classification based on Association Rule, 基于关联规则的分类)
KF(Kernel Function, 核函数)
Polynomial Kernel Function(多项式核函数)
Guassian Kernel Function(高斯核函数)
Radial Basis Function(RBF径向基函数)
String Kernel Function 字符串核函数
NB(Naive Bayesian,朴素贝叶斯)
BN(Bayesian Network/Bayesian Belief Network/Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络)
LDA(Linear Discriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别)
EL(Ensemble Learning, 集成学习)
Boosting
Bagging
Stacking
AdaBoost(Adaptive Boosting 自适应增强)
MEM(Maximum Entropy Model, 最大熵模型)
Confusion Matrix(混淆矩阵)
Precision(精确度)
Recall(召回率)
Accuracy(准确率)
F-score(F得分)
ROC Curve(ROC曲线)
AUC(AUC面积)
Lift Curve(Lift曲线)
KS Curve(KS曲线)
BN(BayesianNetwork/Bayesian Belief Network/ Belief Network , 贝叶斯网络/贝叶斯信度网络/信念网络)
MC(Markov Chain, 马尔科夫链)
MEM(Maximum Entropy Model, 最大熵模型)
HMM(Hidden Markov Model, 马尔科夫模型)
MEMM(Maximum Entropy Markov Model, 最大熵马尔科夫模型)
CRF(Conditional Random Field,条件随机场)
MRF(Markov Random Field, 马尔科夫随机场)
Viterbi(维特比算法)
ANN(Artificial Neural Network, 人工神经网络)
SNN(Static Neural Network, 静态神经网络)
BP(Error Back Propagation, 误差反向传播)
HN(Hopfield Network)
DNN(Dynamic Neural Network, 动态神经网络)
RNN(Recurrent Neural Network, 循环神经网络)
SRN(Simple Recurrent Network, 简单的循环神经网络)
ESN(Echo State Network, 回声状态网络)
LSTM(Long Short Term Memory, 长短记忆神经网络)
CW-RNN(Clockwork-Recurrent Neural Network, 时钟驱动循环神经网络, 2014ICML)等.
Auto-encoder(自动编码器)
SAE(Stacked Auto-encoders堆叠自动编码器)
Sparse Auto-encoders(稀疏自动编码器)
Denoising Auto-encoders(去噪自动编码器)
Contractive Auto-encoders(收缩自动编码器)
RBM(Restricted Boltzmann Machine, 受限玻尔兹曼机)
DBN(Deep Belief Network, 深度信念网络)
CNN(Convolutional Neural Network, 卷积神经网络)
Word2Vec(词向量学习模型)
LDA(Linear Discriminant Analysis/Fisher Linear Discriminant, 线性判别分析/Fish线性判别)
PCA(Principal Component Analysis, 主成分分析)
ICA(Independent Component Analysis, 独立成分分析)
SVD(Singular Value Decomposition 奇异值分解)
FA(Factor Analysis 因子分析法)
VSM(Vector Space Model, 向量空间模型)
Word2Vec(词向量学习模型)
TF(Term Frequency, 词频)
TF-IDF(TermFrequency-Inverse Document Frequency, 词频-逆向文档频率)
MI(Mutual Information, 互信息)
ECE(Expected Cross Entropy, 期望交叉熵)
QEMI(二次信息熵)
IG(Information Gain, 信息增益)
IGR(Information Gain Ratio, 信息增益率)
Gini(基尼系数)
x2 Statistic(x2统计量)
TEW(Text Evidence Weight, 文本证据权)
OR(Odds Ratio, 优势率)
N-Gram Model
LSA(Latent Semantic Analysis, 潜在语义分析)
PLSA(Probabilistic Latent Semantic Analysis, 基于概率的潜在语义分析)
LDA(Latent Dirichlet Allocation, 潜在狄利克雷模型)
SLM(Statistical Language Model, 统计语言模型)
NPLM(Neural Probabilistic Language Model, 神经概率语言模型)
CBOW(Continuous Bag of Words Model, 连续词袋模型)
Skip-gram(Skip-gram Model)
Apriori算法
FP-growth(Frequency Pattern Tree Growth, 频繁模式树生长算法)
MSApriori(Multi Support-based Apriori, 基于多支持度的Apriori算法)
GSpan(Graph-based Substructure Pattern Mining, 频繁子图挖掘)
AprioriAll
Spade
GSP(Generalized Sequential Patterns, 广义序列模式)
PrefixSpan
LR(Linear Regression, 线性回归)
SVR(Support Vector Regression, 支持向量机回归)
ARIMA(Autoregressive Integrated Moving Average Model, 自回归积分滑动平均模型)
GM(Gray Model, 灰色模型)
BPNN(BP Neural Network, 反向传播神经网络)
SRN(Simple Recurrent Network, 简单循环神经网络)
LSTM(Long Short Term Memory, 长短记忆神经网络)
CW-RNN(Clockwork Recurrent Neural Network, 时钟驱动循环神经网络)
……
HITS(Hyperlink-Induced Topic Search, 基于超链接的主题检索算法)
PageRank(网页排名)
SVD
Slope One
DBR(Demographic-based Recommendation, 基于人口统计学的推荐)
CBR(Context-based Recommendation, 基于内容的推荐)
CF(Collaborative Filtering, 协同过滤)
UCF(User-based Collaborative Filtering Recommendation, 基于用户的协同过滤推荐)
ICF(Item-based Collaborative Filtering Recommendation, 基于项目的协同过滤推荐)
EuclideanDistance(欧式距离)
Chebyshev Distance(切比雪夫距离)
Minkowski Distance(闵可夫斯基距离)
Standardized EuclideanDistance(标准化欧氏距离)
Mahalanobis Distance(马氏距离)
Cos(Cosine, 余弦)
Hamming Distance/Edit Distance(汉明距离/编辑距离)
Jaccard Distance(杰卡德距离)
Correlation Coefficient Distance(相关系数距离)
Information Entropy(信息熵)
KL(Kullback-Leibler Divergence, KL散度/Relative Entropy, 相对熵)
Non-constrained Optimization(无约束优化):
Cyclic Variable Methods(变量轮换法)
Variable Simplex Methods(可变单纯形法)
Newton Methods(牛顿法)
Quasi-Newton Methods(拟牛顿法)
Conjugate Gradient Methods(共轭梯度法)。
Constrained Optimization(有约束优化):
Approximation Programming Methods(近似规划法)
Penalty Function Methods(罚函数法)
Multiplier Methods(乘子法)。
Heuristic Algorithm(启发式算法)
SA(Simulated Annealing, 模拟退火算法)
GA(Genetic Algorithm, 遗传算法)
ACO(Ant Colony Optimization, 蚁群算法)
Mutual Information(互信息)
Document Frequence(文档频率)
Information Gain(信息增益)
Chi-squared Test(卡方检验)
Gini(基尼系数)
Statistic-based(基于统计)
Density-based(基于密度)
Clustering-based(基于聚类)。
Pointwise
McRank
Pairwise
RankingSVM
RankNet
Frank
RankBoost;
Listwise
AdaRank
SoftRank
LamdaMART
MPI
Hadoop生态圈
Spark
IGraph
BSP
Weka
Mahout
Scikit-learn
PyBrain
Theano
转自:http://blog.csdn.net/heyongluoyao8/article/details/47840255