目录
- Mixed-Integer Programming
- MIP solvers
- 对比线性和整数规划
- CP Approach to Integer Optimization
- eg: 转换非整数约束
- 用CP-SAT求解器来解
- 用原始CP求解器来解
- eg: 转换非整数约束
注:中文非直接翻译英文,而是理解加工后的笔记,记录英文仅为学其专业表述。
Mixed-Integer Programming
变量部分(非全部)为整数的问题,可以用混合整数规划来解决Mixed Integer Programming (MIP)。MIP也可称为混合整数线性规划问题,Mixed Integer Linear Programming (MILP)。
MIP solvers
OR-Tools 提供多种MIP求解器,默认是开源求解器 Coin-or branch and cut (CBC)。如果从源码安装,可以使用其他第三方求解器如:
- SCIP
- GLPK
- Gurobi
步骤:
- 导入求解器
- 声明求解器
- 调用求解器
eg:
- 目标: maximize(x + 10y)
- 约束:
- x + 7 y ≤ 17.5
- x ≤ 3.5
- x ≥ 0
- y ≥ 0
- x, y 都是整数
from ortools.linear_solver import pywraplp
def main():
# Create the mip solver with the CBC backend.
solver = pywraplp.Solver('simple_mip_program',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
infinity = solver.infinity()
# x and y are integer non-negative variables.
x = solver.IntVar(0.0, infinity, 'x')
y = solver.IntVar(0.0, infinity, 'y')
print('Number of variables =', solver.NumVariables())
# x + 7 * y <= 17.5.
solver.Add(x + 7 * y <= 17.5)
# x <= 3.5.
solver.Add(x <= 3.5)
print('Number of constraints =', solver.NumConstraints())
# Maximize x + 10 * y.
solver.Maximize(x + 10 * y)
result_status = solver.Solve()
# The problem has an optimal solution.
assert result_status == pywraplp.Solver.OPTIMAL
# The solution looks legit (when using solvers others than
# GLOP_LINEAR_PROGRAMMING, verifying the solution is highly recommended!).
assert solver.VerifySolution(1e-7, True)
print('Solution:')
print('Objective value =', solver.Objective().Value())
print('x =', x.solution_value())
print('y =', y.solution_value())
print('\nAdvanced usage:')
print('Problem solved in %f milliseconds' % solver.wall_time())
print('Problem solved in %d iterations' % solver.iterations())
print('Problem solved in %d branch-and-bound nodes' % solver.nodes())
if __name__ == '__main__':
main()
运行得
Number of variables = 2
Number of constraints = 2
Solution:
Objective value = 23.0
x = 3.0
y = 2.0
Advanced usage:
Problem solved in 28.000000 milliseconds
Problem solved in 1 iterations
Problem solved in 0 branch-and-bound nodes
solver.NumVar
实数变量solver.IntVar
整数变量
对比线性和整数规划
猜测整数规划的解也许接近线性规划,但情况并非如此。
You might guess that the solution to the integer problem would be the integer point in the feasible region closest to the linear solution — namely, the point x = 0, y = 2. But as you will see next, this is not the case.
替换约束条件为
infinity = solver.infinity()
x = solver.NumVar(0, infinity, 'x')
y = solver.NumVar(0, infinity, 'y')
print('Number of variables =', solver.NumVariables())
运行得
Number of variables = 2
Number of variables = 2
Number of constraints = 2
Solution:
Objective value = 25.0
x = 0.0
y = 2.5
Advanced usage:
Problem solved in 20.000000 milliseconds
Problem solved in 0 iterations
Problem solved in 0 branch-and-bound nodes
CP Approach to Integer Optimization
约束优化(CP)不同于传统优化理论,它更关注约束和变量,而不是目标函数。有些问题,CP可以比MIP求解器更快地找到最优解。
对于标准整数规划问题,可行点必须满足所有约束,MIP求解速度更快。在这种情况下,可行集是凸的:对于集合中的任意两点,连接它们的线段完全位于集合中。
对于具有高度非凸可行集的问题,CP-SAT解算器通常比MIP解算器更快。当可行集由多个“或”连接的约束定义时,意味着一个点只需要满足其中一个约束即可。
eg: 转换非整数约束
为了提高计算速度,CP-SAT解算器和原始CP解算器都对整数进行运算。
To solve a problem in which some of the constraints have non-integer terms, you must first transform those constraints by multiplying them by a sufficiently large integer.
eg:
- 目标: maximize(2x + 2y + 3z)
- 约束:
\begin{align} x+\frac{7}{2}y+\frac{3}{2}z\leq25 \\ 3x - 5y + 7z \leq 45 \\ 5x + 2y - 6z \leq 37 \\ x, y, z \geq 0 \\ x, y, z \quad integers \\ \end{align}
用CP-SAT求解器来解
from ortools.sat.python import cp_model
def main():
model = cp_model.CpModel()
var_upper_bound = max(50, 45, 37)
x = model.NewIntVar(0, var_upper_bound, 'x')
y = model.NewIntVar(0, var_upper_bound, 'y')
z = model.NewIntVar(0, var_upper_bound, 'z')
model.Add(2*x + 7*y + 3*z <= 50)
model.Add(3*x - 5*y + 7*z <= 45)
model.Add(5*x + 2*y - 6*z <= 37)
model.Maximize(2*x + 2*y + 3*z)
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
print('Maximum of objective function: %i' % solver.ObjectiveValue())
print()
print('x value: ', solver.Value(x))
print('y value: ', solver.Value(y))
print('z value: ', solver.Value(z))
if __name__ == '__main__':
main()
运行得
Maximum of objective function: 35
x value: 7
y value: 3
z value: 5
用原始CP求解器来解
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import solver_parameters_pb2
def main():
# Instantiate a CP solver.
parameters = pywrapcp.Solver.DefaultSolverParameters()
solver = pywrapcp.Solver('simple_CP', parameters)
var_upper_bound = max(50, 45, 37)
x = solver.IntVar(0, var_upper_bound, 'x')
y = solver.IntVar(0, var_upper_bound, 'y')
z = solver.IntVar(0, var_upper_bound, 'z')
solver.Add(2*x + 7*y + 3*z <= 50)
solver.Add(3*x - 5*y + 7*z <= 45)
solver.Add(5*x + 2*y - 6*z <= 37)
objective = solver.Maximize(2*x + 2*y + 3*z, 1)
decision_builder = solver.Phase([x, y, z],
solver.CHOOSE_FIRST_UNBOUND,
solver.ASSIGN_MAX_VALUE)
# Create a solution collector.
collector = solver.LastSolutionCollector()
# Add the decision variables.
collector.Add(x)
collector.Add(y)
collector.Add(z)
# Add the objective.
collector.AddObjective(2*x + 2*y +3*z)
solver.Solve(decision_builder, [objective, collector])
if collector.SolutionCount() > 0:
best_solution = collector.SolutionCount() - 1
print("Maximum of objective function:", collector.ObjectiveValue(best_solution))
print()
print('x= ', collector.Value(best_solution, x))
print('y= ', collector.Value(best_solution, y))
print('z= ', collector.Value(best_solution, z))
if __name__ == '__main__':
main()
运行得
Maximum of objective function: 35
x= 7
y= 3
z= 5