LinkedHashMap 与 LRUcache

LinkedHashMap 与 LRUcache

LRU 缓存介绍

我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己最熟悉的,而长时间不熟悉的自然就忘记了。

其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。

LRU 缓存利用了这样的一种思想。LRU 是 Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU 缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用 LRU 缓存,我们能够提高系统的 performance。

实现

要实现 LRU 缓存,我们首先要用到一个类 LinkedHashMap。

用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap 本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap 相当于一个linkedlist),所以,我们需要 override 这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。关于 LinkedHashMap 中已经有详细的介绍。

代码如下:(可直接复制,也可以通过LRUcache-Java下载)

import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList;

/**
 * An LRU cache, based on LinkedHashMap.
 *
 * 

* This cache has a fixed maximum number of elements (cacheSize). * If the cache is full and another entry is added, the LRU (least recently * used) entry is dropped. * *

* This class is thread-safe. All methods of this class are synchronized. * *

* Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland
* Multi-licensed: EPL / LGPL / GPL / AL / BSD. */ public class LRUCache<K, V> { private static final float hashTableLoadFactor = 0.75f; private LinkedHashMap map; private int cacheSize; /** * Creates a new LRU cache. 在该方法中,new LinkedHashMap(hashTableCapacity, * hashTableLoadFactor, true)中,true代表使用访问顺序 * * @param cacheSize * the maximum number of entries that will be kept in this cache. */ public LRUCache(int cacheSize) { this.cacheSize = cacheSize; int hashTableCapacity = (int) Math .ceil(cacheSize / hashTableLoadFactor) + 1; map = new LinkedHashMap(hashTableCapacity, hashTableLoadFactor, true) { // (an anonymous inner class) private static final long serialVersionUID = 1; @Override protected boolean removeEldestEntry(Map.Entry eldest) { return size() > LRUCache.this.cacheSize; } }; } /** * Retrieves an entry from the cache.
* The retrieved entry becomes the MRU (most recently used) entry. * * @param key * the key whose associated value is to be returned. * @return the value associated to this key, or null if no value with this * key exists in the cache. */
public synchronized V get(K key) { return map.get(key); } /** * Adds an entry to this cache. The new entry becomes the MRU (most recently * used) entry. If an entry with the specified key already exists in the * cache, it is replaced by the new entry. If the cache is full, the LRU * (least recently used) entry is removed from the cache. * * @param key * the key with which the specified value is to be associated. * @param value * a value to be associated with the specified key. */ public synchronized void put(K key, V value) { map.put(key, value); } /** * Clears the cache. */ public synchronized void clear() { map.clear(); } /** * Returns the number of used entries in the cache. * * @return the number of entries currently in the cache. */ public synchronized int usedEntries() { return map.size(); } /** * Returns a Collection that contains a copy of all cache * entries. * * @return a Collection with a copy of the cache content. */ public synchronized Collection> getAll() { return new ArrayList>(map.entrySet()); } // Test routine for the LRUCache class. public static void main(String[] args) { LRUCache c = new LRUCache(3); c.put("1", "one"); // 1 c.put("2", "two"); // 2 1 c.put("3", "three"); // 3 2 1 c.put("4", "four"); // 4 3 2 if (c.get("2") == null) throw new Error(); // 2 4 3 c.put("5", "five"); // 5 2 4 c.put("4", "second four"); // 4 5 2 // Verify cache content. if (c.usedEntries() != 3) throw new Error(); if (!c.get("4").equals("second four")) throw new Error(); if (!c.get("5").equals("five")) throw new Error(); if (!c.get("2").equals("two")) throw new Error(); // List cache content. for (Map.Entry e : c.getAll()) System.out.println(e.getKey() + " : " + e.getValue()); } }

你可能感兴趣的:(UI调查)