Android架构分析之硬件抽象层(HAL)

作者:刘昊昱 

博客:http://blog.csdn.net/liuhaoyutz

Android版本:2.3.7_r1

Linux内核版本:android-goldfish-2.6.29

 

一、硬件抽象层核心数据结构

Android硬件抽象层有三个核心数据结构,分别是hw_module_t , hw_module_methods_t, hw_device_t。定义在hardware/libhardware/include/hardware/hardware.h文件中:

 40/**
 41 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
 42 * and the fields of this data structure must begin with hw_module_t
 43 * followed by module specific information.
 44 */
 45typedef struct hw_module_t {
 46    /** tag must be initialized to HARDWARE_MODULE_TAG */
 47    uint32_t tag;
 48
 49    /** major version number for the module */
 50    uint16_t version_major;
 51
 52    /** minor version number of the module */
 53    uint16_t version_minor;
 54
 55    /** Identifier of module */
 56    const char *id;
 57
 58    /** Name of this module */
 59    const char *name;
 60
 61    /** Author/owner/implementor of the module */
 62    const char *author;
 63
 64    /** Modules methods */
 65    struct hw_module_methods_t* methods;
 66
 67    /** module's dso */
 68    void* dso;
 69
 70    /** padding to 128 bytes, reserved for future use */
 71    uint32_t reserved[32-7];
 72
 73} hw_module_t;
 74
 75typedef struct hw_module_methods_t {
 76    /** Open a specific device */
 77    int (*open)(const struct hw_module_t* module, const char* id,
 78            struct hw_device_t** device);
 79
 80} hw_module_methods_t;
 81
 82/**
 83 * Every device data structure must begin with hw_device_t
 84 * followed by module specific public methods and attributes.
 85 */
 86typedef struct hw_device_t {
 87    /** tag must be initialized to HARDWARE_DEVICE_TAG */
 88    uint32_t tag;
 89
 90    /** version number for hw_device_t */
 91    uint32_t version;
 92
 93    /** reference to the module this device belongs to */
 94    struct hw_module_t* module;
 95
 96    /** padding reserved for future use */
 97    uint32_t reserved[12];
 98
 99    /** Close this device */
100    int (*close)(struct hw_device_t* device);
101
102} hw_device_t;

40-44行,注意这段说明文字,硬件抽象层HAL由一个一个的模块组成,Android规定,每一个模块都是一个命名为HAL_MODULE_INFO_SYM的自定义结构体,并且该结构体的第一个成员必须为hw_module_t类型的变量,其它成员变量根据需要由开发者设置。

82-85行,注意这段说明文字,每个设备对应一个自定义结构体,该结构体的第一个成员必须为hw_device_t,其它成员根据需要由开发者设置。

例如,sensor模块对应的结构体定义在hardware/libhardware/include/hardware/sensors.h文件中:

344/**
345 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
346 * and the fields of this data structure must begin with hw_module_t
347 * followed by module specific information.
348 */
349struct sensors_module_t {
350    struct hw_module_t common;
351
352    /**
353     * Enumerate all available sensors. The list is returned in "list".
354     * @return number of sensors in the list
355     */
356    int (*get_sensors_list)(struct sensors_module_t* module,
357            struct sensor_t const** list);
358};
sensor设备对应的结构体如下:
392/**
393 * Every device data structure must begin with hw_device_t
394 * followed by module specific public methods and attributes.
395 */
396struct sensors_poll_device_t {
397    struct hw_device_t common;
398
399    /** Activate/deactivate one sensor.
400     *
401     * @param handle is the handle of the sensor to change.
402     * @param enabled set to 1 to enable, or 0 to disable the sensor.
403     *
404     * @return 0 on success, negative errno code otherwise
405     */
406    int (*activate)(struct sensors_poll_device_t *dev,
407            int handle, int enabled);
408
409    /**
410     * Set the delay between sensor events in nanoseconds for a given sensor.
411     * It is an error to set a delay inferior to the value defined by
412     * sensor_t::minDelay. If sensor_t::minDelay is zero, setDelay() is
413     * ignored and returns 0.
414     *
415     * @return 0 if successful, < 0 on error
416     */
417    int (*setDelay)(struct sensors_poll_device_t *dev,
418            int handle, int64_t ns);
419
420    /**
421     * Returns an array of sensor data.
422     * This function must block until events are available.
423     *
424     * @return the number of events read on success, or -errno in case of an error.
425     * This function should never return 0 (no event).
426     *
427     */
428    int (*poll)(struct sensors_poll_device_t *dev,
429            sensors_event_t* data, int count);
430};

对于三星公司的crespo(Nexus S的开发代号),其sensor模块的真正实现代码定义在device/samsung/crespo/libsensors/sensors.cpp文件中:

108static struct hw_module_methods_t sensors_module_methods = {
109        open: open_sensors
110};
111
112struct sensors_module_t HAL_MODULE_INFO_SYM = {
113        common: {
114                tag: HARDWARE_MODULE_TAG,
115                version_major: 1,
116                version_minor: 0,
117                id: SENSORS_HARDWARE_MODULE_ID,
118                name: "Samsung Sensor module",
119                author: "Samsung Electronic Company",
120                methods: &sensors_module_methods,
121        },
122        get_sensors_list: sensors__get_sensors_list,
123};

而在open_sensors函数中,对相应设备对应的sensors_poll_device_t结构进行了赋值:

305/** Open a new instance of a sensor device using name */
306static int open_sensors(const struct hw_module_t* module, const char* id,
307                        struct hw_device_t** device)
308{
309        int status = -EINVAL;
310        sensors_poll_context_t *dev = new sensors_poll_context_t();
311
312        memset(&dev->device, 0, sizeof(sensors_poll_device_t));
313
314        dev->device.common.tag = HARDWARE_DEVICE_TAG;
315        dev->device.common.version  = 0;
316        dev->device.common.module   = const_cast(module);
317        dev->device.common.close    = poll__close;
318        dev->device.activate        = poll__activate;
319        dev->device.setDelay        = poll__setDelay;
320        dev->device.poll            = poll__poll;
321
322        *device = &dev->device.common;
323        status = 0;
324
325        return status;
326}

poll__close、poll__activate、poll__setDelay、poll__poll等函数也是在该文件中实现。

 

二、Android如何使用硬件抽象层

硬件抽象层的作用是对上层Application Framework屏蔽Linux底层驱动程序,那么Application Framework与硬件抽象层通信的接口是谁呢?答案是hw_get_module函数,该函数定义在hardware/libhardware/hardware.c文件中:

120int hw_get_module(const char *id, const struct hw_module_t **module)
121{
122    int status;
123    int i;
124    const struct hw_module_t *hmi = NULL;
125    char prop[PATH_MAX];
126    char path[PATH_MAX];
127
128    /*
129     * Here we rely on the fact that calling dlopen multiple times on
130     * the same .so will simply increment a refcount (and not load
131     * a new copy of the library).
132     * We also assume that dlopen() is thread-safe.
133     */
134
135    /* Loop through the configuration variants looking for a module */
136    for (i=0 ; i

hw_get_module函数的作用是由第一个参数id指定的模块ID,找到模块对应的hw_module_t结构体,保存在第二个参数module中。

136-153行,这个for循环是为了获取模块名及路径,保存在path中。循环次数为HAL_VARIANT_KEYS_COUNT次,HAL_VARIANT_KEYS_COUNT是下面要用到的variant_keys数组的数组元素个数。

为了说明这个for循环是如何获得模块名及其路径,我们要先来看一下variant_keys数组的定义,这个数组也是定义在hardware/libhardware/hardware.c文件中:

 34/**
 35 * There are a set of variant filename for modules. The form of the filename
 36 * is ".variant.so" so for the led module the Dream variants
 37 * of base "ro.product.board", "ro.board.platform" and "ro.arch" would be:
 38 *
 39 * led.trout.so
 40 * led.msm7k.so
 41 * led.ARMV6.so
 42 * led.default.so
 43 */
 44
 45static const char *variant_keys[] = {
 46    "ro.hardware",  /* This goes first so that it can pick up a different
 47                       file on the emulator. */
 48    "ro.product.board",
 49    "ro.board.platform",
 50    "ro.arch"
 51};
 52
 53static const int HAL_VARIANT_KEYS_COUNT =
 54    (sizeof(variant_keys)/sizeof(variant_keys[0]));

34-43行,这段注释说明了模块对应的动态库的命名规范。模块对应的动态库文件名格式为.variant.so,MODULE_ID是模块对应的ID,不同模块对应一个唯一固定的ID,那么variant是什么呢?又怎么获得variant呢?这就跟下面的variant_keys数组有关了。

45-51行,定义了variant_keys数组,这个数组有4个成员,即指向“ro.hardware”、“ ro.product.board”、“ ro.board.platform”、“ ro.arch”四个字符串的指针。我们可以将“ro.hardware”、“ ro.product.board”、“ ro.board.platform”、“ ro.arch”理解为属性,系统会通过适当的方法,根据平台、架构等给这些属性赋值。

例如,“ro.hardware”属性的属性值是在系统启动时由init进程负责设置的。它首先会读取/proc/cmdline文件,检查里面有没有一个名为androidboot.hardware的属性,如果有,就把它的值赋值给“ro.hardware”,否则,就将/proc/cpuinfo文件的内容读取出来,并解析出Haredware字段的内容赋值给“ro.hardware”。例如在Android模拟器中,从/proc/cpuinfo文件中读取出来的Hardware字段内容为goldfish,于是,init进程就会将 “ro.hardware” 属性设置为goldfish。

“ ro.product.board”、“ ro.board.platform”、“ ro.arch”属性是从/system/build.prop文件读取出来的。/system/build.prop文件是由编译系统中的编译脚本build/core/Makefile和shell脚本build/tools/buildinfo.sh生成的,这里不再详细分析。

53-54行,定义了HAL_VARIANT_KEYS_COUNT变量,它是variant_keys数组的大小。

从上面我们已经知道了variant_keys数组的内容,也知道了模块对应的动态库的命名规范。现在我们的问题是模块动态库命名规范格式.variant.so中的variant是怎样获得的?又跟variant_keys数组有什么关系?为了回答这个问题,我们再回到hw_get_module函数的定义。

hw_get_module函数第138行,调用property_get(variant_keys[i], prop, NULL)函数,其作用是取得variant_keys[i]对应的属性值,保存在prop中。也就是说,在第1次循环时,是取得variant_keys[0]即“ro.hardware”对应的属性值,保存在prop中,如果没有取得到,property_get函数会返回0,则进入下一次循环,依次尝试取得“ ro.product.board”、“ ro.board.platform”、“ ro.arch”对应的属性值,保存在prop中。如果取得了某个variant_keys[i]对应的属性值,则在hw_get_module函数第141-142行,按.variant.so规范,得到模块动态库的名字及路径,其中variant就是我们前面得到的prop的值。

hw_get_module函数第148-153行,如果没有找到variant_keys[i]对应的属性,则使用.default.so。

hw_get_module函数第156-160行,调用load(id, path, module)导入模块动态库,将模块对应的hw_module_t结构体,保存在module变量中。load函数也定义在hardware/libhardware/hardware.c文件中:

 56/**
 57 * Load the file defined by the variant and if successful
 58 * return the dlopen handle and the hmi.
 59 * @return 0 = success, !0 = failure.
 60 */
 61static int load(const char *id,
 62        const char *path,
 63        const struct hw_module_t **pHmi)
 64{
 65    int status;
 66    void *handle;
 67    struct hw_module_t *hmi;
 68
 69    /*
 70     * load the symbols resolving undefined symbols before
 71     * dlopen returns. Since RTLD_GLOBAL is not or'd in with
 72     * RTLD_NOW the external symbols will not be global
 73     */
 74    handle = dlopen(path, RTLD_NOW);
 75    if (handle == NULL) {
 76        char const *err_str = dlerror();
 77        LOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
 78        status = -EINVAL;
 79        goto done;
 80    }
 81
 82    /* Get the address of the struct hal_module_info. */
 83    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
 84    hmi = (struct hw_module_t *)dlsym(handle, sym);
 85    if (hmi == NULL) {
 86        LOGE("load: couldn't find symbol %s", sym);
 87        status = -EINVAL;
 88        goto done;
 89    }
 90
 91    /* Check that the id matches */
 92    if (strcmp(id, hmi->id) != 0) {
 93        LOGE("load: id=%s != hmi->id=%s", id, hmi->id);
 94        status = -EINVAL;
 95        goto done;
 96    }
 97
 98    hmi->dso = handle;
 99
100    /* success */
101    status = 0;
102
103    done:
104    if (status != 0) {
105        hmi = NULL;
106        if (handle != NULL) {
107            dlclose(handle);
108            handle = NULL;
109        }
110    } else {
111        LOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
112                id, path, *pHmi, handle);
113    }
114
115    *pHmi = hmi;
116
117    return status;
118}

第74行,调用dlopen(path, RTLD_NOW)导入path指定的模块动态库。

第83-84行,通过dlsym函数取得HAL_MODULE_INFO_SYM_AS_STR指定的变量的地址,这个地址就是模块对应的自定义结构体地址。

第115行,将hw_module_t结构赋值给传递进来的参数pHmi,即返回给上层调用函数。

分析到这里,我们可以看出,通过hw_get_module函数,Application Framework代码可以通过指定的模块ID找到模块hw_module_t结构体。有了hw_module_t结构体,就可以调用hw_module_t-> methods->open函数,在open函数中,完成对设备对应的hw_device_t结构体的初始化,并指定设备相关的自定义函数。

你可能感兴趣的:(Android架构分析)