深度学习实战---猫狗大战(pytorch实现)

数据准备

猫狗大战数据集下载链接

微软的数据集已经分好类,直接使用就行,

数据划分

我们将猫和狗的图片分别移动到训练集和验证集中,其中90%的数据作为训练集,10%的图片作为验证集,使用shutil.move()来移动图片。

新建文件夹train,test,将数据集放入train中,利用代码将10%的数据移动到test中

深度学习实战---猫狗大战(pytorch实现)_第1张图片

文件移动代码

import os
import shutil
source_path = r"E:\猫狗大战数据集\PetImages"
train_dir = os.path.join(source_path, "train")
test_dir = os.path.join(source_path,"test")
train_dir_list = os.listdir(train_dir)
for dir in train_dir_list:
    category_dir_path = os.path.join(train_dir, dir)
    image_file_list = os.listdir(category_dir_path)
    num = int(0.1*len(image_file_list))

    #移动10%文件到对应目录
    for i in range(num):
        shutil.move(os.path.join(category_dir_path,image_file_list[i]),os.path.join(test_dir,dir,image_file_list[i]))

移动后

深度学习实战---猫狗大战(pytorch实现)_第2张图片

数据可视化

import matplotlib.pyplot as plt
import numpy
import os
from PIL import Image #读取图片模块
from matplotlib.image import imread
source_path = r"E:\猫狗大战数据集\PetImages"
#分别从Dog,Cat文件夹中选取10张图片显示
train_Dog_dir = os.path.join(source_path, "train","Dog")
train_Cat_dir = os.path.join(source_path, "train","Cat")
Dog_image_list = os.listdir(train_Dog_dir)

Cat_image_list = os.listdir(train_Cat_dir)
show_image = [os.path.join(train_Dog_dir,Dog_image_list[i]) for i in range(10)]
show_image.extend([os.path.join(train_Cat_dir,Cat_image_list[i]) for i in range(10)])
for i in show_image:
    print(i)
plt.figure()

for i in range(1,20):
    plt.subplot(4,5,i)
    img = Image.open(show_image[i-1])
    plt.imshow(img)

plt.show()

效果图:深度学习实战---猫狗大战(pytorch实现)_第3张图片

可以看出图片的尺寸不同,在数据预处理时需要将图片resize,

使用预训练模型(resnet)进行训练

from    torchvision import datasets, transforms
import torch.utils.data
import torch.nn as nn
import torchvision.models as models
import torch.optim as optim

from visdom import Visdom

if __name__ == '__main__':

    #数据处理
    data_transform = transforms.Compose([
        transforms.Resize(128),
        transforms.CenterCrop(128),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    ])

    train_dataset = datasets.ImageFolder(root=r'E:/猫狗大战数据集/PetImages/train/', transform=data_transform)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4)

    test_dataset = datasets.ImageFolder(root=r'E:/猫狗大战数据集/PetImages/test/', transform=data_transform)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=True, num_workers=4)

    #损失函数
    criteon = nn.CrossEntropyLoss()

    #加载预训练模型
    transfer_model = models.resnet18(pretrained=True)
    dim_in = transfer_model.fc.in_features
    transfer_model.fc = nn.Linear(dim_in, 2)

    #优化器adam
    optimizer = optim.Adam(transfer_model.parameters(), lr=0.01)

    #加载模型到GPU
    transfer_model = transfer_model.cuda()

    viz = Visdom()

    viz.line([[0.0,0.0]],[0.],win='train',opts=dict(title="train_loss&&acc", legend=['loss','acc']))
    viz.line([[0.0,0.0]], [0.], win='test', opts=dict(title="test loss&&acc.",legend=['loss', 'acc']))

    global_step =0
    #模型训练
    transfer_model.train()
    for epoch in range(10):
        train_acc_num =0
        test_acc_num =0
        for batch_idx,(data,target) in enumerate(train_loader):
            data, target = data.cuda(), target.cuda()

            #投入数据,得到预测值
            logits = transfer_model(data)
            _,pred = torch.max(logits.data,1)
            #print(pred, target)
            loss = criteon(logits, target)

            optimizer.zero_grad()

            loss.backward()
            optimizer.step()

            #准确度计算
            train_acc_num += pred.eq(target).float().sum().item()

            #print("准确数:",train_acc_num," ",batch_idx, " ",len(data))
            train_acc = train_acc_num/((batch_idx+1)*len(data))
            #print(train_acc)
            #print(train_acc.item())
            global_step +=1
            viz.line([[loss.item(), train_acc]],[global_step],win='train',update='append')

            if batch_idx %200 ==0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f},acc:{}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item(),train_acc))

        test_loss =0
        for data, target in test_loader:
            data, target = data.cuda(), target.cuda()
            logits = transfer_model(data)
            test_loss += criteon(logits,target).item()
            _, pred = torch.max(logits.data, 1)
            # 准确度计算
            test_acc_num += pred.eq(target).float().sum().item()

        viz.line([[test_loss / len(test_loader.dataset), test_acc_num / len(test_loader.dataset)]],
                 [global_step], win='test', update='append')
        test_acc = train_acc_num / len(test_loader.dataset)

        viz.images(data.view(-1, 3, 128, 128), win='x')
        viz.text(str(pred.detach().cpu().numpy()), win='pred',
                 opts=dict(title='pred'))
        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, test_acc, len(test_loader.dataset),
            100. * test_acc / len(test_loader.dataset)))

Train Epoch: 0 [0/22498 (0%)]    Loss: 1.061759,acc:0.25
Train Epoch: 0 [800/22498 (4%)]    Loss: 0.708053,acc:0.5174129353233831
Train Epoch: 0 [1600/22498 (7%)]    Loss: 0.403057,acc:0.5155860349127181
Train Epoch: 0 [2400/22498 (11%)]    Loss: 0.721054,acc:0.5033277870216306
Train Epoch: 0 [3200/22498 (14%)]    Loss: 0.629318,acc:0.5037453183520599

其中visdom是模型可视化模块

你可能感兴趣的:(深度学习笔记,深度学习,pytorch)