# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import os
import random
from tqdm import tqdm
import sklearn.cluster as cluster
def iou(x, centroids):
dists = []
for centroid in centroids:
c_w, c_h = centroid
w, h = x
if c_w >= w and c_h >= h:
dist = w * h / (c_w * c_h)
elif c_w >= w and c_h <= h:
dist = w * c_h / (w * h + (c_w - w) * c_h)
elif c_w <= w and c_h >= h:
dist = c_w * h / (w * h + c_w * (c_h - h))
else: # means both w,h are bigger than c_w and c_h respectively
dist = (c_w * c_h) / (w * h)
dists.append(dist)
return np.array(dists)
def avg_iou(x, centroids):
n, d = x.shape
sums = 0.
for i in range(x.shape[0]):
# note IOU() will return array which contains IoU for each centroid and X[i]
# slightly ineffective, but I am too lazy
sums += max(iou(x[i], centroids))
return sums / n
def write_anchors_to_file(centroids, distance, anchor_file):
anchors = centroids * 416 / 32 # I do not know whi it is 416/32
anchors = [str(i) for i in anchors.ravel()]
print(
"\n",
"Cluster Result:\n",
"Clusters:", len(centroids), "\n",
"Average IoU:", distance, "\n",
"Anchors:\n",
", ".join(anchors)
)
with open(anchor_file, 'w') as f:
f.write(", ".join(anchors))
f.write('\n%f\n' % distance)
def k_means(x, n_clusters, eps):
init_index = [random.randrange(x.shape[0]) for _ in range(n_clusters)]
centroids = x[init_index]
d = old_d = []
iterations = 0
diff = 1e10
c, dim = centroids.shape
while True:
iterations += 1
d = np.array([1 - iou(i, centroids) for i in x])
if len(old_d) > 0:
diff = np.sum(np.abs(d - old_d))
print('diff = %f' % diff)
if diff < eps or iterations > 1000:
print("Number of iterations took = %d" % iterations)
print("Centroids = ", centroids)
return centroids
# assign samples to centroids
belonging_centroids = np.argmin(d, axis=1)
# calculate the new centroids
centroid_sums = np.zeros((c, dim), np.float)
for i in range(belonging_centroids.shape[0]):
centroid_sums[belonging_centroids[i]] += x[i]
for j in range(c):
centroids[j] = centroid_sums[j] / np.sum(belonging_centroids == j)
old_d = d.copy()
def get_file_content(fnm):
with open(fnm) as f:
return [line.strip() for line in f]
def main(args):
print("Reading Data ...")
file_list = []
for f in args.file_list:
file_list.extend(get_file_content(f))
data = []
for one_file in tqdm(file_list):
one_file = one_file.replace('images', 'labels') \
.replace('JPEGImages', 'labels') \
.replace('.png', '.txt') \
.replace('.jpg', '.txt')
for line in get_file_content(one_file):
clazz, xx, yy, w, h = line.split()
data.append([float(w),float(h)])
data = np.array(data)
if args.engine.startswith("sklearn"):
if args.engine == "sklearn":
km = cluster.KMeans(n_clusters=args.num_clusters, tol=args.tol, verbose=True)
elif args.engine == "sklearn-mini":
km = cluster.MiniBatchKMeans(n_clusters=args.num_clusters, tol=args.tol, verbose=True)
km.fit(data)
result = km.cluster_centers_
# distance = km.inertia_ / data.shape[0]
distance = avg_iou(data, result)
else:
result = k_means(data, args.num_clusters, args.tol)
distance = avg_iou(data, result)
write_anchors_to_file(result, distance, args.output)
if "__main__" == __name__:
parser = argparse.ArgumentParser()
parser.add_argument('file_list', nargs='+', help='TrainList')
parser.add_argument('--num_clusters', '-n', default=5, type=int, help='Number of Clusters')
parser.add_argument('--output', '-o', default='../results/anchor.txt', type=str, help='Result Output File')
parser.add_argument('--tol', '-t', default=0.005, type=float, help='Tolerate')
parser.add_argument('--engine', '-m', default='sklearn', type=str,
choices=['original', 'sklearn', 'sklearn-mini'], help='Method to use')
args = parser.parse_args()
main(args)