为了分析faster-Rcnn的测试结果,需要先将测试结果保存起来,效果如下:
(图片名 类别 bbox坐标)
代码如下:
#!/usr/bin/env python
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""
Demo script showing detections in sample images.
See README.md for installation instructions before running.
"""
import _init_paths
#import matplotlib
#matplotlib.use('Agg')
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse
#自己的类别名称
CLASSES = ('__background__',
'xiansu5', 'xiansu10', 'xiansu15', 'xiansu20',
'xiansu30', 'xiansu40', 'xiansu50', 'xiansu60', 'xiansu70',
'xiansu80', 'xiansu90', 'xiansu100','xiansu110', 'xiansu120')
NETS = {'vgg16': ('VGG16',
'VGG16_faster_rcnn_final.caffemodel'),
'zf': ('ZF',
'ZF_faster_rcnn_final.caffemodel')}
def vis_detections(image_name, class_name, dets, thresh=0.5):
"""Draw detected bounding boxes."""
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
return
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]
if(class_name == '__background__'):
fw = open('./result.txt','a') #保存结果的文件,下同
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu5'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu10'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu15'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu20'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu30'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu40'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu50'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu60'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu70'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu80'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu90'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu100'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu110'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
elif(class_name == 'xiansu120'):
fw = open('./result.txt','a')
fw.write(str(image_name)+' '+class_name+' '+str(int(bbox[0]))+' '+str(int(bbox[1]))+' '+str(int(bbox[2]))+' '+str(int(bbox[3]))+'\n')
fw.close()
def demo(net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'VOCdevkit2007','VOC2007','JPEGImages', image_name) #保存图片的路径
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# Visualize detections for each class
CONF_THRESH = 0.9
NMS_THRESH = 0.05
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(image_name, cls, dets, thresh=CONF_THRESH)
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Faster R-CNN demo')
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--cpu', dest='cpu_mode',
help='Use CPU mode (overrides --gpu)',
action='store_true')
parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
choices=NETS.keys(), default='zf')
args = parser.parse_args()
return args
if __name__ == '__main__':
cfg.TEST.HAS_RPN = True # Use RPN for proposals
args = parse_args()
prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
NETS[args.demo_net][1])
if not os.path.isfile(caffemodel):
raise IOError(('{:s} not found.\nDid you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel))
if args.cpu_mode:
caffe.set_mode_cpu()
else:
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
print '\n\nLoaded network {:s}'.format(caffemodel)
# Warmup on a dummy image
im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
for i in xrange(2):
_, _= im_detect(net, im)
fr = open('./data/demo/test/test1.txt','r') #保存所有测试图片名称的文件,一行一个文件名
for im_name in fr:
im_name = im_name.strip('\n')
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print 'Demo for test/{}'.format(im_name)
demo(net,im_name)
plt.show()
fr.close()