Python之OpenGL笔记(37):散射光下的棋盘球体

一、目的

1、实现散射光照射下的棋盘球体;

二、程序运行结果

Python之OpenGL笔记(37):散射光下的棋盘球体_第1张图片

三、散射光

   上一小节中给出了仅仅使用环境光进行照射的案例,读者可能觉得效果并不好。确实如此,仅仅有环境光的场景效果是很差的,没有层次感。本节将介绍另外一种真实感好很多的光照效果—散射光(Diffuse),其指的是从物体表面向全方位360°均匀反射的光,如图6-8所示。
Python之OpenGL笔记(37):散射光下的棋盘球体_第2张图片

   散射光具体代表的是现实世界中粗糙的物体表面被光照射时,反射光在各个方向基本均匀(也称为“漫反射”)的情况。

   虽然反射后的散射光在各个方向是均匀的,但散射光反射的强度与入射光的强度以及入射的角度密切相关。因此,当光源的位置发生变化时,散射光的效果会发生明显变化。主要体现为当光垂直地照射到物体表面时比斜照时要亮,其具体计算公式如下。

散射光照射结果=材质的反射系数×散射光强度×max(cos(入射角),0)

   实际开发中往往分两步进行计算,此时公式被拆解为如下情况。

散射光最终强度=散射光强度×max(cos(入射角),0)
散射光照射结果=材质的反射系数×散射光最终强度

   材质的反射系数实际指的就是物体被照射处的颜色,散射光强度指的是散射光中RGB(红、绿、蓝)3个色彩通道的强度。

   从上述公式中可以看出,与环境光计算公式唯一的区别是引入了最后一项“max(cos(入射角),0)”。其含义是入射角越大,反射强度越弱,当入射角的余弦值为负时(即入射角大于90°),反射强度为0。由于入射角为入射光向量与法向量的夹角,因此,其余弦值并不需要调用三角函数进行计算,只需要首先将两个向量进行规格化,然后再进行点积即可,图6-10说明了这个问题。
Python之OpenGL笔记(37):散射光下的棋盘球体_第3张图片

   图6-10中的N代表被照射点表面的法向量,P为被照射点,L为从P点到光源的向量。N与L的夹角即为入射角。向量数学中,两个向量的点积为两个向量夹角的余弦值乘以两个向量的模,而规格化后向量的模为1。因此,首先将两个向量规格化,再点积就可以求得两个向量夹角的余弦值。

四、程序说明:

   由于本案例中原始情况下的球心位于坐标原点,所以,每个顶点法向量的x、y、z轴分量与顶点的x、y、z坐标是一致的。这样就不必单独计算每个顶点的法向量了,直接将顶点坐标序列看作顶点法向量序列使用即可。

五、源代码

"""
程序名称:GL_DrawBall04.py
编程: dalong10
功能: 散射光的应用实现
参考资料: 《OpenGL ES 3.x游戏开发》(上卷)吴亚峰
"""
import myGL_Funcs    #Common OpenGL utilities,see myGL_Funcs.py
import sys, random, math
import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *
import numpy 
import numpy as np
import glfw
from pyrr import Quaternion, matrix44, Vector3

strVS = """
#version 330 core
layout(location = 0) in vec3 aPosition;
in vec3 aNormal;     //顶点法向量
uniform mat4 uMVMatrix;//总变换矩阵
uniform mat4 uMMatrix; //变换矩阵(包括平移、旋转、缩放)
uniform vec3 uLightLocation;//光源位置
out vec3 vPosition ;  //用于传递给片元着色器的顶点位置
out vec4 vDiffuse;    //接收从顶点着色器过来的散射光分量

void pointLight (								//散射光光照计算的方法
  in vec3 normal,								//法向量
  inout vec4 diffuse,								//散射光计算结果
  in vec3 lightLocation,							//光源位置
  in vec4 lightDiffuse							//散射光强度
){  
  vec3 normalTarget=aPosition+normal;					//计算变换后的法向量
  vec3 newNormal=(uMMatrix*vec4(normalTarget,1)).xyz-(uMMatrix*vec4(aPosition,1)).xyz;
  newNormal=normalize(newNormal);					//对法向量规格化
//计算从表面点到光源位置的向量vp
  vec3 vp= normalize(lightLocation-(uMMatrix*vec4(aPosition,1)).xyz);
  vp=normalize(vp);									//规格化vp
  float nDotViewPosition=max(0.0,dot(newNormal,vp)); 	//求法向量与vp向量的点积与0的最大值
  diffuse=lightDiffuse*nDotViewPosition;			//计算散射光的最终强度
}
void main(){
	gl_Position= uMVMatrix* vec4(aPosition, 1.0);
   vec4 diffuseTemp=vec4(0.0,0.0,0.0,0.0);   
   pointLight(normalize(aNormal), diffuseTemp, uLightLocation, vec4(0.8,0.8,0.8,1.0));  
   vDiffuse=diffuseTemp;					//将散射光最终强度传给片元着色器
   vPosition = aPosition; 					//将顶点的位置传给片元着色器
	}
"""

strFS = """
#version 330 core
in vec3 vPosition;//接收从顶点着色器过来的顶点位置
in vec4 vDiffuse;//接收从顶点着色器过来的散射光最终强度
out vec4 fragColor;//输出的片元颜色
void main(){
   vec3 color;
   float n = 8.0;//外接立方体每个坐标轴方向切分的份数
   float uR=0.8 ;
   float span = 2.0*uR/n;//每一份的尺寸(小方块的边长)
   
   int i = int((vPosition.x + uR)/span);//当前片元位置小方块的行数
   int j = int((vPosition.y + uR)/span);//当前片元位置小方块的层数
   int k = int((vPosition.z + uR)/span);//当前片元位置小方块的列数
    //计算当前片元行数、层数、列数的和并对2取模
   int whichColor = int(mod(float(i+j+k),2.0));
   if(whichColor == 1) {//奇数时为红色
   		color = vec3(0.678,0.231,0.129);//红色
   }
   else {//偶数时为白色
   		color = vec3(1.0,1.0,1.0);//白色
   }
	//根据环境光强度计算最终片元颜色值
   fragColor=vec4(color,0)*vDiffuse;
	}
"""

cameraPos=np.array([0.0, 0.0, 30])      # 眼睛的位置(默认z轴的正方向)
cameraFront=np.array([0.0, 0.0, 0.0])  # 瞄准方向的参考点(默认在坐标原点)
cameraUp=np.array([0.0, 1.0, 0.0])     # 定义对观察者而言的上方(默认y轴的正方向)
WIN_W, WIN_H = 640, 480  # 保存窗口宽度和高度的变量

class FirstSphere:
    def __init__(self, cube_verticeside ):
        # load shaders
        self.program = myGL_Funcs.loadShaders(strVS, strFS)
        glUseProgram(self.program)
        self.vertIndex = glGetAttribLocation(self.program, b"aPosition")
        self.normIndex = glGetAttribLocation(self.program, b"aNormal")
                
        self.cube_vertices = cube_verticeside    
        # set up vertex array object (VAO)
        self.vao = glGenVertexArrays(1)
        glBindVertexArray(self.vao)            
        # set up VBOs
        vertexData = numpy.array(self.cube_vertices, numpy.float32)
        self.vertexBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData, GL_STATIC_DRAW)       
        # enable arrays
        glEnableVertexAttribArray(self.vertIndex)       
        # Position attribute
        glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
        glVertexAttribPointer(self.vertIndex, 3, GL_FLOAT, GL_FALSE, 0,None)   
        # aNormal attribute
        normData = numpy.array(self.cube_vertices, numpy.float32)
        self.normBuffer = glGenBuffers(1)
        glBindBuffer(GL_ARRAY_BUFFER, self.normBuffer)
        glBufferData(GL_ARRAY_BUFFER, 4*len(normData), normData, GL_STATIC_DRAW)       

        glEnableVertexAttribArray(self.normIndex)       
        glBindBuffer(GL_ARRAY_BUFFER, self.normBuffer)
        glVertexAttribPointer(self.normIndex, 3, GL_FLOAT, GL_FALSE, 0,None)   
                    
        # unbind VAO
        glBindVertexArray(0)
        glBindBuffer(GL_ARRAY_BUFFER, 0)    
             
    def render(self,  mvMatrix, mMatrix,LightLocation):       
        # use shader
        glUseProgram(self.program)
   
        # set modelview matrix
        glUniformMatrix4fv(glGetUniformLocation(self.program, 'uMVMatrix'), 
                          1, GL_FALSE, mvMatrix)
        glUniformMatrix4fv(glGetUniformLocation(self.program, 'uMMatrix'), 
                          1, GL_FALSE, mMatrix)
        glUniform3fv(glGetUniformLocation(self.program, 'uLightLocation'), 
                          1, GL_FALSE, LightLocation)
        # bind VAO
        glBindVertexArray(self.vao)
        # draw
        
        glDrawArrays(GL_TRIANGLES,0,len(self.cube_vertices) )
        # unbind VAO
        glBindVertexArray(0)

def drawglobeVBO():
    PI = 3.14159265358979323846264
    statcky = 30 # 横向向切成多少片
    stlicex = 30 # 纵向切多少片
    R = 0.8      # 半径
    angleHy =  (2*PI)/statcky  # 横向每份的角度		算出弧度值
    angleZx =  (2*PI)/stlicex; # 纵向每份的角度		算出弧度值
    NumAngleHy = 0.0 # 当前横向角度
    NumAngleZx = 0.0 # 当前纵向角度

    c=numpy.array([], numpy.float32)
    for j in range(statcky):
        for i in range(stlicex):
            NumAngleHy = angleHy*i # 
            NumAngleZx = angleZx*j #  起点都是轴指向的方向。根据右手定则决定转向,只要转向相同,那么两个就合适
            x0 = R*np.cos(NumAngleHy)*np.cos(NumAngleZx)  
            y0 = R*np.cos(NumAngleHy)*np.sin(NumAngleZx) 
            z0 = R*np.sin(NumAngleHy) 
            x1 = R*np.cos(NumAngleHy)*np.cos(NumAngleZx+angleZx)  
            y1 = R*np.cos(NumAngleHy)*np.sin(NumAngleZx+angleZx) 
            z1 = R*np.sin(NumAngleHy) 
            x2 = R*np.cos(NumAngleHy+angleHy)*np.cos(NumAngleZx+angleZx)  
            y2 = R*np.cos(NumAngleHy+angleHy)*np.sin(NumAngleZx+angleZx) 
            z2 = R*np.sin(NumAngleHy+angleHy) 
            x3 = R*np.cos(NumAngleHy+angleHy)*np.cos(NumAngleZx)  
            y3 = R*np.cos(NumAngleHy+angleHy)*np.sin(NumAngleZx) 
            z3 = R*np.sin(NumAngleHy+angleHy) 
            c=np.hstack((c,numpy.array([x1,y1,z1], numpy.float32) ))
            c=np.hstack((c,numpy.array([x3,y3,z3], numpy.float32) ))
            c=np.hstack((c,numpy.array([x0,y0,z0], numpy.float32) ))
            c=np.hstack((c,numpy.array([x1,y1,z1], numpy.float32) ))
            c=np.hstack((c,numpy.array([x2,y2,z2], numpy.float32) ))
            c=np.hstack((c,numpy.array([x3,y3,z3], numpy.float32) ))
    return c
 

#Is called whenever a key is pressed/released via GLFW
def on_key(window, key, scancode, action, mods):
    if key == glfw.KEY_ESCAPE and action == glfw.PRESS:
        glfw.set_window_should_close(window,1)

if __name__ == '__main__':
    import sys
    import glfw
    import OpenGL.GL as gl
    
    keys=numpy.zeros(1024)
    deltaTime = 0.0
    lastFrame = 0.0   # Time of last frame
    # Initialize the library
    if not glfw.init():
        sys.exit()

    # Create a windowed mode window and its OpenGL context
    window = glfw.create_window(640, 480, "GL_DrawBall04 ", None, None)
    if not window:
        glfw.terminate()
        sys.exit()

    # Make the window's context current
    glfw.make_context_current(window)
    # Install a key handler
    glfw.set_key_callback(window, on_key)
    PI = 3.14159265358979323846264
     
    # 画球面 
    vert = drawglobeVBO()               
    mMatrix1 = matrix44.create_from_translation(Vector3([-3, 0, 3]))
    mMatrix2 = matrix44.create_from_translation(Vector3([2, -2, 4]))
    # Loop until the user closes the window
    a=0          
    firstSphere1 = FirstSphere(vert)
    while not glfw.window_should_close(window):
        currentFrame = glfw.get_time()
        deltaTime = currentFrame - lastFrame       
        lastFrame = currentFrame
        # Render here
        width, height = glfw.get_framebuffer_size(window)
        WIN_W, WIN_H =width, height
        ratio = width / float(height)
        glfw.poll_events()

        gl.glViewport(0, 0, width, height)
        gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
        
        #glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);  #用于控制多边形的显示方式
        gl.glMatrixMode(gl.GL_PROJECTION)
        gl.glLoadIdentity()
        gl.glOrtho(-ratio, ratio, -1, 1, 1, -1)
        gl.glMatrixMode(gl.GL_MODELVIEW)
        gl.glLoadIdentity()
        gl.glClearColor(0.0,0.1,0.1,1.0)
        
        # modelview matrix
        mvMatrix = matrix44.create_look_at(cameraPos, cameraFront, cameraUp,None)     # 设置视点
        pMatrix = matrix44.create_perspective_projection_from_bounds(-ratio*1.0, ratio*1.0,  -1, 1,20,100,None)  
        model0 = matrix44.multiply(mvMatrix,pMatrix)       
        trans1 = matrix44.create_from_translation(Vector3([-0.6, 0, 0]))
        trans2 = matrix44.create_from_translation(Vector3([0.6, 0, 0]))
        model1 = matrix44.multiply(model0,trans1)       
        model2 = matrix44.multiply(model0,trans2)       

        firstSphere1.render( model1,mMatrix1,Vector3([3.0, 2, 0])) #球1
        firstSphere1.render( model2,mMatrix2,Vector3([0, 1, 0]))   #球2
      
        # Swap front and back buffers
        glfw.swap_buffers(window)       
        # Poll for and process events
        glfw.poll_events()

    glfw.terminate()

六、参考资料

1、大龙10的简书:https://www.jianshu.com/p/49dec482a291
2、吴亚峰《OpenGL ES 3.x游戏开发》(上卷)

你可能感兴趣的:(Python,OpenGL)