简单博弈模型

(一)巴什博奕(Bash Game)
n%(m+1)>=1  (n>m)
先手必胜    (n<=m)

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个,最后取光者得胜。

显然,如果n=m+1,1那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。

必胜法则:每个回合时m+1个,如果n=(m+1)*r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。


下面介绍分析此类题目的通用方法:P/N分析:

P点: 即必败点,某玩家位于此点,只要对方无失误,则必败;

N点: 即必胜点,某玩家位于此点,只要自己无失误,则必胜。

三个定理:

定理:

  一、 所有终结点都是必败点P(上游戏中,轮到谁拿牌,还剩0张牌的时候,此人就输了,因为无牌取);

  二、所有一步能走到必败点P的就是N点;

  三、通过一步操作只能到N点的就是P点;

简单博弈模型_第1张图片

(二)Fibonacci’s Game(斐波那契博弈)
先手面对斐波那契数列必败。
反之必胜。

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1)先手不能在第一次把所有的石子取完;

2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家。

“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。

如果n=83(83=55+21+5+2),假如先手取2颗,那么后手无法取5颗或更多,而5是一个Fibonacci数,那么一定是先手取走这5颗石子中的最后一颗,同样的道理,接下去先手取走接下来的后21颗中的最后一颗,再取走后55颗中的最后一颗,那么先手赢。

反过来如果n是Fibonacci数,比如n=89:记先手一开始所取的石子数为y,若y>=34颗,那么一定后手赢,因为89-34=55=34+21<2*34,所以只需要考虑先手第一次取得石子数y<34的情况即可,所以现在剩下的石子数x介于55到89之间,它一定不是一个Fibonacci数,于是我们把x分解成Fibonacci数:x=55+f[i]+…+f[j],如果f[j]<=2y,那么对B就是面临x局面的先手,根据之前的分析,B只要先取f[j]个即可,就可保证必胜。


(三)威佐夫博奕(Wythoff Game)
(0,0) 必败。
(x,y)(x<=y)floor(y-x)(sqrt(5.0)+1)/2==x必败, 反之必胜。

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。

    a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。

    1.任何自然数都包含在一个且仅有一个奇异局势中。

    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。

    2.任意操作都可将奇异局势变为非奇异局势。

    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

    3.采用适当的方法,可以将非奇异局势变为奇异局势。 

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

    4.(Betty 定理):如果存在正无理数 A, B 满足 1/A + 1/B = 1,那么集合 P = { [At], t ∈ Z+}、Q = { [Bt], t ∈ Z+} 恰为集合 Z+ 的一个划分,即:P ∪ Q = Z+,P ∩ Q = ø。

    5.上述矩阵中每一行第一列的数为 [Φi],第二列的数为 [(Φ + 1)i],其中 Φ = (sqrt(5) + 1) / 2 为黄金分割比。

    

(四)尼姆博奕(Nimm Game)
(a,b,c)a^b^c==0 必败。

有三(或多)堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

我们用(a,b,c)(a<=b<=c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

任何奇异局势(a,b,c)都有a^b^c=0。(^为异或)


如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?

假设 a

因为有如下的运算结果: a^b^(a^b)=(a^a)^(b^b)=0。要将c变为a^b,只要从c中取出c-(a^b)即可。

例如(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

你可能感兴趣的:(博弈论)