论文阅读-Learning Deep CNN Denoiser Prior for Image Restoration

Zhang K, Zuo W, Gu S, et al. Learning Deep CNN Denoiser Prior for Image Restoration[J]. 2017.

1.引言

图像恢复(image restoration,IR)  ——从退化模型中恢复出干净的图像x

                   退化模型:  ,其中H是退化矩阵,v是附加噪声。

图像恢复有三种典型的任务,在图像去噪中,H是单位矩阵(identity matrix); 图像去模糊中,H的模糊算子;图像超分辨中,H是下采样和模糊的复合算子。

从贝叶斯的角度分析,x的估计()可以通过MAP(最大后验估计)问题求解:

           

        

式(2)前半部分为保真项(fidelity firm),后半部分为正则项(regularization firm )。

为了解决式(2),一般有两种方法,基于模型的优化方法和判别学习方法(discriminative learning methods),基于模型的优化方法例如NCSR,基于学习的方法L例如SRCNN、MLP等等,前者只需退化矩阵,后者需要训练集和特定的退化矩阵;在此我的理解是,前者为传统的图像处理算法,后者为利用深度学习或者机器学习的图像处理算法。这两种方法都有各自的优缺点,如果能加以结合各自的优势,可能会提高效果。幸运的是,已有变量分离技术( variable splitting technique),如ADMM(alternating direction method of multipliers ),HQS(half quadratic splitting)方法,使得可以分别处理保真项(fidelity term)和正则项,其中正则项仅对应于去噪的子问题。因此,可以在基于模型的优化方法中使用discriminative denoisers。

本文的目标在于训练一系列快速高效的discriminative denoisers,并把它们用于基于模型优化的方法中,解决求逆问题。不使用MAP相关方法,而是使用CNN学习denoisers。

本文贡献: 

  •               训练出一系列CNN denoisers。使用变量分离技术,强大的denoisers可以为基于模型的优化方法带来图像先验。
  •                 学习到的CNN denoisers被作为一个模块部分插入基于模型的优化方法中,解决其他的求逆问题。

2.背景

 以HQS方法为例,讲解如何对保真项和正则项进行变量分离。

为了将denoiser先验加入式(2)的优化操作,可行的变量分离操作通常是将保真项和正则项分解,在HQS方法中,引入附加变量z,等式(2)可被改写为一个约束最优化问题:

                  

用HQS方法求解式(4)则可写为:


其中为惩罚系数,式(5)可通过以下迭代求解:


其中保真项在式(6a)中,正则项在式(6b)中,(6a)的解法如下:


(6b)可改写为:


通过贝叶斯概率,式(8)可以看做处理图像高斯噪声的问题,噪声水平为


通过式(8)和式(9),图像先验可以暗含在去噪先验中。

3.学习深度CNN去噪器先验

论文阅读-Learning Deep CNN Denoiser Prior for Image Restoration_第1张图片

CNN去噪器模型如上图,由七层组成,含三种blocks,分别是:第一个“dilated Convolution+Relu”,中间五个“dilated Convolution+BN+Relu”,最后一层“dilated Convolution”。其中空洞因子(dilated factors,3×3)被依次设置为,1,2,3,4,3,2,1。每一个中间层的feature maps个数均为64.

下面给出本网络一些重要的设计和训练细节。

  •  使用dilated filter扩大感受野。在图像去噪任务中,背景信息对重构受损像素具有很大的作用。通过扩大CNN的感受野有两个方法,一个是增大卷积核尺寸,另一个是加深卷积深度。而增大卷积核尺寸,不仅引入了更多变量,也增加了计算负担,因此,最好的做法就是在现有的CNN设计中,使用深度更深的3×3卷积核。本文就是使用空洞卷积来平衡网络深度和感受野大小。空洞因子为s的空洞滤波器可以解释为尺寸为(2s+1)×(2s+1)的稀疏滤波器,其中只有9个位置非零。因此,对应于各层的感受野分为别:3,5,7,9,7,5,3,因此,所提出的网络卷感受野为33×33(问题:怎么得到的?).如果使用传统的3×3滤波器,网络深度一定(如7),网络将会有一个15×15的感受野;或者感受野一定(如33×33),网络深度将为16。为了展示本文网络融合了以上两种模型的优势,基于噪声水平25,在相同的训练参数下,我们训练了三个模型。
  • 使用批标准化BN和残差学习加速训练。
  • 使用小尺寸训练样本避免边界效应。
  • 学习噪声水平间隔较小的特定的去噪模型。


你可能感兴趣的:(论文阅读-Learning Deep CNN Denoiser Prior for Image Restoration)